
Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70

Original Scientific Paper

Algorithms for Finding Specific Elements in

Algebraic Hyperstructures with One

Hyperoperation

Aboutorab Pourhaghani , Seid Mohammad Anvariyeh?

and Bijan Davvaz

Abstract

In this paper, first, we show how to define an algebraic hyperstructure
by using algorithms. Then, we present algorithms that calculate specific el-
ements in algebraic hyperstructures. These specific elements are: scalars,
scalar identities, identities, inverses, zero elements, right simplifiable el-
ements, left simplifiable elements, left absorbing-like elements and right
absorbing-like elements. We also introduce some algorithms in algebraic
hyperstructures to check properties or calculate specific members. These
algorithms are presented for algebraic hyperstructures with one hyperopera-
tion, i.e. hypergroupoids. However, they can be developed for other algebraic
hyperstructures.

Keywords: Algorithm, Hypergroupoid, Algebraic hyperstructure, Specific el-
ement.

2020 Mathematics Subject Classification: 68W01, 68W30, 15B34, 20N99.

How to cite this article
A. Pourhaghani, S. M. Anvariyeh and B. Davvaz, Algorithms for finding
specific elements in algebraic hyperstructures with one hyperoperation,
Math. Interdisc. Res. 10 (1) (2025) 49-70.

?Corresponding author (E-mail: anvariyeh@yazd.ac.ir)
Academic Editor: Seyed Hassan Alavi
Received 4 July 2024, Accepted 12 December 2024
DOI: 10.22052/MIR.2024.255119.1470

c© 2025 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0002-1192-9101
https://orcid.org/0000-0001-7535-1698
https://orcid.org/0000-0003-1941-5372

50 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

1. Introduction
The concept of algebraic hyperstructures was introduced in 1934 by Marty [1], at
the 8th Congress of Scandinavian Mathematicians and has been studied thence-
forth by many mathematicians. In a classical algebraic structure, the composition
of two elements is an element, while in an algebraic hyperstructure, the compo-
sition of two elements is a set [2, p. 1]. In recent decades, the development of
algebraic hyperstructures has made significant progress in theoretical issues, and
has less been addressed to practical and interdisciplinary issues. One of the fea-
tures of this branch of algebra is the absence of the required algorithms so that
the theoretical topics of this branch of algebra can be entered into mathematical
software and provide key support to its development in applied and interdisci-
plinary research. For example, by using an algebraic software, such as “GAP [3]",
we can find specific elements of a group, such as inverse of an element, but finding
such elements in algebraic hyperstructures is not possible by applying softwares,
because there are no suitable algorithms in this area.

So far, few algorithms have been presented in algebraic hyperstructures. For
example, we can refer to [4–12]. Most of these algorithms only enumerate some
specific algebraic hyperstructures (such as Rosenberg hypergroups) using combi-
natorial methods. But none of them have provided algorithms to find specific
elements of an algebraic hyperstructure.

In this paper, we are going to present algorithms to find specific elements in
algebraic hyperstructures with one hyperoperation. Algorithms will be presented
in such a way that their implementation in mathematical softwares and program-
ming languages is easily possible. Also, at the end of each part, Maple codes for
algorithms are provided.

We can ask three important questions about these issues that we are trying to
answer in this paper:

• How can we define a hypergroupoid (H, ◦) by algorithms?

• How can we find specific elements, such as scalars, identities, invertible ele-
ments, in a hypergroupoid (H, ◦) by algorithms?

• Can we develop these algorithms for algebraic hyperstructures with more
than one hyperoperation, such as hyperrings?

We try to answer the above questions in the following frameworks:

a) Defining a hypergroupoid (H, ◦), which led to Algorithms 1 and 2 and addi-
tional Algorithm 3;

b) Finding specific elements in a hypergroupoid (H, ◦) by algorithm, which led
to Algorithms 4, 5, 6, 7, 8, 9 and 10;

c) Developing above algorithms for algebraic hyperstructures with more than
one hyperoperation.

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 51

In issue a), using the mentioned algorithms, we can easily define a hyper-
groupoid (H, ◦). In Example 3.2 and the paragraph after that, these algorithms
are stated and how they are used to define a hypergroupoid (H, ◦) is presented.
It should be noted that the mentioned methods for defining hypergroupoid (H, ◦)
are primary, and the reader can use more complex methods, e.g. using generators,
in defining hypergroupoid (H, ◦). The only thing that should be observed is the
number and type of inputs and output, which we have discussed in its place.

In issue b), using several algorithms, we can find specific elements in alge-
braic hyperstructures with one hyperoperation. These elements are: scalars, scalar
identities, identities, inverses, zero elements, right simplifiable elements, left sim-
plifiable elements, left absorbing-like elements and right absorbing-like elements.
These elements are some of the most famous elements in algebraic hyperstruc-
tures that play important roles in the theorems of this field. For other elements,
which are not mentioned in this paper, similar algorithms can be provided based
on presented algorithms.

In issue c), if we have an algebraic hyperstructure with more than one hyper-
operation, such as hyperrings, we should first define this algebraic hyperstructure
appropriately. The definition of a hyperstructure with more than one hyperopera-
tion is similar to hyperstructures with one hyperoperation. It is enough to define a
procedure with a specific name for each operation or hyperoperation. Then, define
the desired algorithms using the procedures of these operations and the above al-
gorithms. The method of presenting the algorithms mentioned above can be used
as a template for the algorithms of this topic. This topic is left to the reader.

2. Preliminaries

In this section, we recall some required definitions in algebraic hyperstructures.
The content of this section is mostly adopted from [2, 13, 14].

Let H be a non-empty set. A mapping ◦ : H × H → P∗(H), where P∗(H)
denotes the family of all non-empty subsets of H, is called a hyperoperation on H.
The couple (H, ◦) is called a hypergroupoid. A hypergroupoid (H, ◦) is called finite
if H has only finitely many elements.

Let A and B be two non-empty subsets of H and a, b ∈ H, then we denote

A ◦B =
⋃
x∈A
y∈B

x ◦ y, a ◦B = {a} ◦B =
⋃
y∈B

a ◦ y, A ◦ b = A ◦ {b} =
⋃
x∈A

x ◦ b.

Other required definitions will be recalled later on.

Example 2.1. ([15]). Let H = {O,A,B,AB}. Define the hyperoperation ◦ on

52 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

H by the following table:

◦ O A B AB

O {O} {O,A} {O,B} {A,B}
A {O,A} {O,A} {AB,A,B,O} {AB,A,B}
B {O,B} {AB,A,B,O} {O,B} {AB,A,B}
O {A,B} {AB,A,B} {AB,A,B} {AB,A,B}

This is ABO blood table. The (H, ◦) is a hypergroupoid. This hypergroupoid is
used for future algorithms as an example.

3. Algorithms
In this section, we first present methods for defining a hypergroupoid (H, ◦) (sub-
section 3.1). Then, in subsection 3.2, we present several algorithms for finding
specific elements in algebraic hyperstructures. These elements are: scalars, scalar
identities, identities, inverses, zero elements, right simplifiable elements, left sim-
plifiable elements, left absorbing-like elements and right absorbing-like elements.

In writing algorithms, modularity has been observed, so that minimal changes
are required when changing or updating algorithms.

3.1 Defining algebraic hyperstructures by algorithm
In this subsection, we present two methods for defining a finite hypergroupoid
(H, ◦). First, we need to define the setH and hyperoperation ◦ onH appropriately
for using in next algorithms. If the set H is infinite, the algorithms are logically
correct but may not terminate. Therefore, we suppose that the set H is finite.

The set H can be easily implemented by tools available in programming lan-
guages or mathematical software. In these languages and software, there is often a
tool called “set" to define the set. We can also use “linked list" or “dynamic array"
to define the set. We can implement hyperoperation ◦ as a “procedure" or “func-
tion" that takes two inputs, such as a, b ∈ H, and returns the desired output, i.e.
a ◦ b ⊆ H. This method of implementation of hyperoperation ◦ in programming
languages or mathematical software frees us from the details of defining hyperop-
eration. We may define the hyperoperation using a table of hyperoperation, or we
may define hyperoperation using generator members, or in any desired method.
The details of implementation of hyperoperation ◦ are not important for other
algorithms, the only thing that matters in implementation of hyperoperation ◦ is
that it is defined as a procedure or function that takes two inputs, say a, b ∈ H, and
returns the corresponding set, say a◦b ⊆ H. In Example 3.2, we have shown an al-
gorithm for defining hyperoperation ◦ using the table of hyperoperation. Although
the table of hyperoperation is the simplest method to define hyperoperation, it is
not an optimal method in programming. Example 3.2 is just a simple example for
implementation of hyperoperation using a table of hyperoperation.

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 53

Also, we need an array to specify the order of members of the set H; see
Example 3.1.

Example 3.1. Let H = {b, c, a, d}. So, we have |H| = 4. Suppose the order of
members of H is equal to the array AH = [a b c d]. We call the array AH , the
array of order of elements of H. In Example 2.1, we have AH = [O A B AB].
This array is equal to the first row or first column of the table of hyperoperation
◦.

We denote the index of an element a ∈ H by aindex in terms of the ar-
ray AH (with default name “aindex” in Maple codes). We need a procedure,
named “WhatIndex”, for this. In Maple, the procedure “Search" finds the in-
dex of an entry in an array. We can define the procedure WhatIndex based
on this procedure, or define by a “for" loop. For using it, we simply write
aindex := WhatIndex(a,AH).

Now, we define a hypergroupoid by the algorithm provided in Example 3.2.

Example 3.2. Consider Example 2.1. We have H = {O,A,B,AB} and the
hyperoperation ◦ on H is given by the following table:

◦ O A B AB

O {O} {O,A} {O,B} {A,B}
A {O,A} {O,A} {AB,A,B,O} {AB,A,B}
B {O,B} {AB,A,B,O} {O,B} {AB,A,B}
O {A,B} {AB,A,B} {AB,A,B} {AB,A,B}

First we define and calculate three variables. For any hypergroupoid, we need
these variables to define the procedure of the hyperoperation ◦. It doesn’t matter
by which method the hyperoperation ◦ is defined.
H = {O,A,B,AB};
|H| = cardinal of H;
AH = [O A B AB].
By the array AH , we calculate the index of each member in the set H according
to its position of it in the array. For example, the index of B in AH is equal to
3 and we write Bindex = 3. This index might be found by procedure WhatIndex
(discussed before). Therefore, we can write Bindex := WhatIndex(B,AH).

Now, according to the above table, we can define the hyperoperation ◦. First,
we define a matrix with dimension |H| × |H|, called Table◦. The value of each
entry in the matrix Table◦ is determined according to the table of hyperoperation
◦ and the array AH . Therefore, we have:

Table◦ :=

{O} {A,O} {B,O} {A,B}
{A,O} {A,O} {A,AB,B,O} {A,AB,B}
{B,O} {A,AB,B,O} {B,O} {A,AB,B}
{A,B} {A,AB,B} {A,AB,B} {A,AB,B}

Based on Table◦, the hyperoperation ◦ is presented in Algorithm 1 and the

procedure ◦ corresponds to hyperoperation ◦.

54 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

Algorithm 1: Defining hyperoperation ◦ based on matrix Table◦.

1 Input: Matrix Table◦, a ∈ H, b ∈ H
2 Output: Set a ◦ b
3 Procedure: hyperoTable(Table◦ : matrix, a, b) : set
4 return Table◦[WhatIndex(a,AH),WhatIndex(b,AH)]
5

1 Input: a ∈ H, b ∈ H
2 Output: Set a ◦ b
3 Procedure: ◦(a, b)
4 return hyperoTable(Table◦, a, b)

Algorithm 1 returns the value of the set a ◦ b using the indices corresponding
to a and b and the matrix Table◦.

If the hyperoperation ◦ in hypergroupoid (H, ◦) is defined by mapping f :
H × H → P∗(H), instead of the table of the hyperoperation ◦, we can easily
define the procedures ◦ as follows:

Algorithm 2: Defining hyperoperation for hypergroupoid (H, ◦) by mapping
f : H ×H → P∗(H).

1 Input: a ∈ H, b ∈ H
2 Output: Set a ◦ b
3 Procedure: ◦(a, b) : set
4 return f(a, b)

For Example 3.2, the Maple codes for H, AH , |H| and Table◦ are gathered
below. In Maple, Boolean variables are initialized with “true" and “false" values,
instead of 0 and 1. In these codes, we denote |H| by variable cardH.

H:={O,A,AB,B};
cardH:=numelems(H);
AH:=Array([O,A,B,AB]);
#--
TableO:=Matrix(cardH,cardH):
TableO[1,1]:={O}:
TableO[1,2]:={O,A}:
TableO[1,3]:={O,B}:
TableO[1,4]:={A,B}:
TableO[2,1]:={O,A}:
TableO[2,2]:={O,A}:
TableO[2,3]:={O,A,B,AB}:
TableO[2,4]:={A,B,AB}:
TableO[3,1]:={O,B}:
TableO[3,2]:={O,A,B,AB}:

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 55

TableO[3,3]:={O,B}:
TableO[3,4]:={A,B,AB}:
TableO[4,1]:={A,B}:
TableO[4,2]:={A,B,AB}:
TableO[4,3]:={A,B,AB}:
TableO[4,4]:={A,B,AB}:
TableO;

The following procedures are written in Maple based on Algorithm 1. In
Maple, to find the index of a member in an array, there is a ready-made procedure
called “Search", which is located in package “ListTools" and is called by command
“with(ListTools):". This procedure uses a loop “for" to search the index of a mem-
ber in an array and when it reaches the desired member, it returns the value of
the loop variable as the index. We present the procedure WhatIndex(a,AH) in
Maple based on procedure “Search" as follow.

Now, using the above codes, we can define the procedures of hyperoperation
“hypero" as follows in Maple.

with(ListTools):
#--
WhatIndex:=proc(a,AH::Array,$)::integer;
return Search(a,AH);
end proc:
#--
hyperoTable:=proc(TableO::Matrix,a,b,$)::set;
return TableO[WhatIndex(a,AH),WhatIndex(b,AH)];
end proc:

#--
hypero:=proc(a,b,$)::set;
return hyperoTable(TableO,a,b);
end proc:

#--

For mapping f : H ×H → P∗(H), the procedures of hyperoperation ◦, based
on Algorithm 2, can be defined directly in Maple as follow.

hypero:=proc(a,b,$)::set;
return f(a,b);
end proc:

#--

Although we can now use procedure of hyperoperation ◦ in future algorithms,
it is better to use intermediate procedure aob(), instead of directly using procedure
of hyperoperation ◦. The reason is that if it is necessary to check some things, e.g.
the type of inputs, before using procedure of hyperoperation ◦ in the algorithms,
it is possible by using the procedure aob(). Procedure aob() is presented very

56 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

simply, but the user can add any condition he deems necessary to the instructions
of procedure aob() before “return" line.

Algorithm 3: Calculating sets a ◦ b.

1 Input: Hyperoperation ◦, a ∈ H, b ∈ H
2 Output: Set a ◦ b
3 Procedure: aob(◦ : procedure, a, b) : set
4 return a ◦ b /* a ◦ b = ◦(a,b) */

Procedure call: aob(◦, a, b)

The Maple codes of Algorithm 3 is as follow:

aob:=proc(hypero::procedure,a,b)::set;
return hypero(a,b);
end proc:

#--

aob(hypero,b,a);

3.2 Algorithms for finding some specific elements in a hy-
pergroupoid (H, ◦)

In this subsection, some specific elements in hypergroupoids are found using al-
gorithms. Algorithms in this subsection can be a template for writing algorithms
for other elements and other algebraic hyperstructures. The algorithms of this
subsection are presented based on the following definitions. For any algorithm, if
there is a statement, which is equivalent to the following definitions and is com-
putationally more optimal, then the body of the algorithm can be easily updated
according to the new statement. It is enough that the type and number of inputs
and outputs are fixed and do not change, and the instructions of the algorithm
body are changed to the desired instructions.

First, required definitions are recalled and then desired algorithms are pre-
sented. Definitions are given from [2, 13, 14]. Definitions are provided with nec-
essary changes for hypergroupoids.

Let H be a non-empty set, (H, ◦) be a hypergroupoid.

• An element a ∈ H is called scalar if |a ◦ x| = |x ◦ a| = 1 for all x ∈ H;

• An element e ∈ H is called scalar identity if x◦e = e◦x = {x} for all x ∈ H;

• An element e ∈ H is called identity if x ∈ e ◦ x ∩ x ◦ e for all x ∈ H;

• An element a′ ∈ H is called an inverse of a ∈ H if there exists an identity
e ∈ H such that e ∈ a ◦ a′ ∩ a′ ◦ a;

• An element 0 ∈ H is called zero element if x ◦ 0 = 0 ◦ x = {0} for all x ∈ H;

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 57

• An element a ∈ H is called right simplifiable element (respectively, left) if for
all x, y ∈ H we have x◦a = y◦a⇒ x = y (respectively, a◦x = a◦y ⇒ x = y);

• An element a ∈ H is called left absorbing-like element (respectively, right
absorbing-like) if a ∈ a ◦ x (respectively, a ∈ x ◦ a) for all x ∈ H.

For each algorithm, except the Algorithm 7, two procedures are defined. The
first procedure checks whether the input element has the desired property. The
output of this procedure is “true" or “false". The second procedure, using the
first procedure, returns the set of all elements that have the desired property. For
example, Algorithm 4 consists of two procedures IsScalar() and AllScalar(). Pro-
cedure IsScalar() checks whether the element a ∈ H is a scalar in hypergroupoid
(H, ◦) or not. Procedure AllScalar() finds and returns the set of all scalars in
hypergroupoid (H, ◦) using procedure IsScalar().

By Algorithm 4, we can determine all scalars in a hypergroupoid (H, ◦).

Algorithm 4: Determining all scalars in a hypergroupoid (H, ◦).

1 Input: Hyperoperation ◦, Set H, a ∈ H
2 Output: Is a ∈ H a scalar in (H, ◦)?
3 Procedure: IsScalar(◦ : procedure,H : set, a) : boolean
4 b := true
5 for x ∈ H do
6 if |a ◦ x| 6= 1 then
7 b := false /* a ◦ x = aob(◦,a,x) */
8 break
9 else if |x ◦ a| 6= 1 then

10 b := false /* x ◦ a = aob(◦,x,a) */
11 break
12 end if
13 end for
14 return b
15

1 Input: Hyperoperation ◦, Set H
2 Output: Set of all scalars in (H, ◦)
3 Procedure: AllScalar(◦ : procedure,H : set) : set
4 T := ∅
5 for a ∈ H do
6 if IsScalar(◦, H, a) = true then
7 T := T ∪ {a}
8 end if
9 end for

10 return T

Procedure call: IsScalar(◦, H, a), AllScalar(◦, H)

58 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

By Algorithm 5, we can determine all scalar identities in a hypergroupoid
(H, ◦).

Algorithm 5: Determining all scalar identities in a hypergroupoid (H, ◦).

1 Input: Hyperoperation ◦, Set H, e ∈ H
2 Output: Is e ∈ H a scalar identity in (H, ◦)?
3 Procedure: IsScalarIdentity(◦ : procedure,H : set, e) : boolean
4 b := true
5 for x ∈ H do
6 if e ◦ x 6= {x} then
7 b := false /* e ◦ x = aob(◦,e,x) */
8 break
9 else if x ◦ e 6= {x} then

10 b := false /* x ◦ e = aob(◦,x,e) */
11 break
12 end if
13 end for
14 return b
15

1 Input: Hyperoperation ◦, Set H
2 Output: Set of all scalar identities in (H, ◦)
3 Procedure: AllScalarIdentity(◦ : procedure,H : set) : set
4 T := ∅
5 for e ∈ H do
6 if IsScalarIdentity(◦, H, e) = true then
7 T := T ∪ {e}
8 end if
9 end for

10 return T

Procedure call: IsScalarIdentity(◦, H, e), AllScalarIdentity(◦, H)

By Algorithm 6, we can determine all identities in a hypergroupoid (H, ◦).

Algorithm 6: Determining all identities in a hypergroupoid (H, ◦).

1 Input: Hyperoperation ◦, Set H, e ∈ H
2 Output: Is e ∈ H a identity in (H, ◦)?
3 Procedure: IsIdentity(◦ : procedure,H : set, e) : boolean
4 b := true
5 for x ∈ H do
6 if x /∈ e ◦ x then
7 b := false /* e ◦ x = aob(◦,e,x) */
8 break
9 else if x /∈ x ◦ e then

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 59

10 b := false /* x ◦ e = aob(◦,x,e) */
11 break
12 end if
13 end for
14 return b
15

1 Input: Hyperoperation ◦, Set H
2 Output: Set E (all identities in (H, ◦))
3 Procedure: AllIdentity(◦ : procedure,H : set) : set
4 T := ∅
5 for e ∈ H do
6 if IsIdentity(◦, H, e) = true then
7 T := T ∪ {e}
8 end if
9 end for

10 return T

Procedure call: IsIdentity(◦, H, e), AllIdentity(◦, H)

The Algorithm 7 determines all inverses of an element in H and all invert-
ible elements. This algorithm is more complicated than other algorithms in this
subsection.

Algorithm 7: Determining all inverses in a hypergroupoid (H, ◦).

1 Input: Hyperoperation ◦, Set H, Set E (all identities in (H, ◦)), a′ ∈ H, a ∈ H
2 Output: Is a′ ∈ H an inverse of H in (H, ◦)?
3 Procedure: IsInverse(◦ : procedure,H : set, E : set, a′, a) : boolean
4 b := false
5 for e ∈ E do
6 if e ∈ a ◦ a′ then
7 if e ∈ a′ ◦ a then
8 b := true /* a ◦ a′ = aob(◦,a,a’) and . . . */
9 break

10 end if
11 end if
12 end for
13 return b
14

1 Input: Hyperoperation ◦, Set H, Set E (all identities in (H, ◦)), a′ ∈ H, a ∈ H
2 Output: Is a′ ∈ H invertible in (H, ◦)?
3 Procedure: IsInvertible(◦ : procedure,H : set, E : set, a′) : boolean
4 b := false
5 for a ∈ H do
6 if IsInverse(◦, H,E, a′, a) = true then

60 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

7 b := true
8 break
9 end if

10 end for
11 return b
12

1 Input: Hyperoperation ◦, Set H, Set E (all identities in (H, ◦)), a′ ∈ H
2 Output: Set of all inverses of a′ ∈ H in (H, ◦)
3 Procedure: InverseOf(◦ : procedure,H : set, E : set, a′) : set
4 T := ∅
5 for a ∈ H do
6 if IsInverse(◦, H,E, a′, a) = true then
7 T := T ∪ {a}
8 end if
9 end for

10 return T
11

1 Input: Hyperoperation ◦, Set H, Set E (all identities in (H, ◦))
2 Output: Set of all invertible elements in (H, ◦)
3 Procedure: AllInvertible(◦ : procedure,H : set, E : set) : set
4 T := ∅
5 for a′ ∈ H do
6 if IsInvertible(◦, H,E, a′) = true then
7 T := T ∪ {a′}
8 end if
9 end for

10 return T

Procedure call: IsInverse(◦, H, E, a′, a), IsInvertible(◦, H, E, a′),
InverseOf(◦, H, E, a′), AllInvertible(◦, H, E)

In Algorithm 7, procedure IsInverse() checks whether element a′ ∈ H is the
inverse of the element a ∈ H. The output of this procedure is “true" or “false".
Procedure IsInvertible() checks whether element a′ is invertible? The output of
this procedure is also “true" or “false". Procedure InverseOf() finds the set of all
inverse elements of the element a′. The output of this procedure is empty if a′ is
not invertible, otherwise it will be the set of all inverses of a′. Finally, procedure
AllInvertible() returns the set of all invertible elements. The output can be empty,
because the desired hypergroupoid (H, ◦) may not have any inverse elements.

Algorithm 8 determines all zero elements in a hypergroupoid (H, ◦).

Algorithm 8: Determining all zero elements in a hypergroupoid (H, ◦).

1 Input: Hyperoperation ◦, Set H, 0 ∈ H
2 Output: Is 0 ∈ H a zero element in (H, ◦)?

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 61

3 Procedure: IsZeroElems(◦ : procedure,H : set, 0) : boolean
4 b := true
5 for x ∈ H do
6 if x ◦ 0 6= {0} then
7 b := false /* x ◦ 0 = aob(◦,x,0) */
8 break
9 else if 0 ◦ x 6= {0} then

10 b := false /* 0 ◦ x = aob(◦,0,x) */
11 break
12 end if
13 end for
14 return b
15

1 Input: Hyperoperation ◦, Set H
2 Output: Set of all zero elements in (H, ◦)
3 Procedure: AllZeroElems(◦ : procedure,H : set) : set
4 T := ∅
5 for 0 ∈ H do
6 if IsZeroElems(◦, H, 0) = true then
7 T := T ∪ {0}
8 end if
9 end for

10 return T

Procedure call: IsZeroElems(◦, H, 0), AllZeroElems(◦, H)

By Algorithms 9, we can determine all right simplifiable elements in a hyper-
groupoid (H, ◦).

Algorithm 9: Determining all right simplifiable elements in a hypergroupoid (H, ◦).

1 Input: Hyperoperation ◦, Set H, a ∈ H
2 Output: Is a ∈ H a simplifiable element in (H, ◦)?
3 Procedure: IsRightSimplifiable(◦ : procedure,H : set, a) : boolean
4 b := true
5 for x ∈ H do
6 for y ∈ H do
7 if (x ◦ a = y ◦ a) ∧ (x 6= y) then
8 b := false /* x ◦ a = aob(◦,x,a) and ... */
9 break

10 end if
11 end for
12 end for
13 return b
14

62 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

1 Input: Hyperoperation ◦, Set H
2 Output: Set of all right simplifiable elements in (H, ◦)
3 Procedure: AllRightSimplifiable(◦ : procedure,H : set) : set
4 T := ∅
5 for a ∈ H do
6 if IsRightSimplifiable(◦, H, a) = true then
7 T := T ∪ {a}
8 end if
9 end for

10 return T

Procedure call: IsRightSimplifiable(◦, H, a), AllRightSimplifiable(◦, H)

For left simplifiable elements, in Algorithm 9, it is enough to replace the ex-
pression “if (x ◦a = y ◦a)∧ (x 6= y) then" with “if (a ◦x = a ◦ y)∧ (x 6= y) then"
and word “Right" with “Left".

By Algorithm 10, we can determine all left absorbing-like elements in a hyper-
groupoid (H, ◦).

Algorithm 10: Determining all left absorbing-like elements in a hypergroupoid
(H, ◦).

1 Input: Hyperoperation ◦, Set H, a ∈ H
2 Output: Is a ∈ H a left absorbing−like element in (H, ◦)?
3 Procedure: IsLeftAbsorb(◦ : procedure,H : set, a) : boolean
4 b := true
5 for x ∈ H do
6 if a /∈ a ◦ x then
7 b := false /* a ◦ x = aob(◦,a,x) */
8 break
9 end if

10 end for
11 return b
12

1 Input: Hyperoperation ◦, Set H
2 Output: Set of all left absorbing−like element in (H, ◦)
3 Procedure: AllLeftAbsorb(◦ : procedure,H : set) : set
4 T := ∅
5 for a ∈ H do
6 if IsLeftAbsorb(◦, H, 0) = true then
7 T := T ∪ {a}
8 end if
9 end for

10 return T

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 63

Procedure call: IsLeftAbsorb(◦, H, a), AllLeftAbsorb(◦, H)

For right absorbing-like elements, in Algorithm 10, it is enough to replace the
expression “if a /∈ a ◦ x then" with “if a /∈ x ◦ a then" and the word “Right"
with “Left".

The following procedures are written in Maple based on algorithms presented
in this subsection.

IsScalar:=proc(hypero::procedure,H::set,a,$)::boolean;
local b::boolean,x;
b:=true;
for x in H do
if numelems(aob(hypero,a,x))<>1 then
b:=false;
break;

elif numelems(aob(hypero,x,a))<>1 then
b:=false;
break;

end if;
end do;
return b;
end proc:

#--
AllScalar:=proc(hypero::procedure,H::set,$)::set;
local T::set,a;
T:={};
for a in H do
if IsScalar(hypero,H,a) then
T:=T union {a};

end if;
end do;
return T;
end proc:

#--
IsScalarIdentity:=proc(hypero::procedure,H::set,e,$)::boolean;
local b::boolean,x;
b:=true;
for x in H do
if aob(hypero,e,x)<>{x} then
b:=false;
break;

elif aob(hypero,x,e)<>{x} then
b:=false;
break;

end if;

64 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

end do;
return b;
end proc:

#--
AllScalarIdentity:=proc(hypero::procedure,H::set,$)::set;
local T::set,e;
T:={};
for e in H do
if IsScalarIdentity(hypero,H,e) then
T:=T union {e};

end if;
end do;
return T:
end proc:

#--
IsIdentity:=proc(hypero::procedure,H::set,e,$)::boolean;
local b::boolean,x;
b:=true;
for x in H do
if (not (x in aob(hypero,e,x))) then
b:=false;
break;

elif (not (x in aob(hypero,x,e))) then
b:=false;
break;

end if;
end do;
return b;
end proc:

#--
AllIdentity:=proc(hypero::procedure,H::set,$)::set;
local T::set,e;
T:={};
for e in H do
if IsIdentity(hypero,H,e) then
T:=T union {e};

end if;
end do;
return T;
end proc:

#--
IsInverse:=proc(hypero::procedure,H::set,E::set,aprime,a,$)::boolean;
local b::boolean,e;
b:=false;

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 65

for e in E do
if (e in aob(hypero,a,aprime)) then
if (e in aob(hypero,aprime,a)) then
b:=true;
break;

end if;
end if;

end do;
return b;
end proc:

#--
IsInvertible:=proc(hypero::procedure,H::set,E::set,aprime,$)::boolean;
local b::boolean,a;
b:=false;
for a in H do
if IsInverse(hypero,H,E,aprime,a) then
b:=true;
break;

end if;
end do;
return b;
end proc:

#--
InverseOf:=proc(hypero::procedure,H::set,E::set,aprime,$)::boolean;
local T::set,a;
T:={};
for a in H do
if IsInverse(hypero,H,E,aprime,a) then
T:=T union {a};

end if;
end do;
return T;
end proc:

#--
AllInvertible:=proc(hypero::procedure,H::set,E::set,$)::set;
local T::set,aprime;
T:={};
for aprime in H do
if IsInvertible(hypero,H,E,aprime) then
T:=T union {aprime};

end if;
end do;
return T;
end proc:

66 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

#--
IsZeroElems:=proc(hypero::procedure,H::set,zero,$)::boolean;
local b::boolean,x;
b:=true;
for x in H do
if aob(hypero,x,zero)<>{zero} then
b:=false;
break;

elif aob(hypero,zero,x)<>{zero} then
b:=false;
break;

end if;
end do;
return b;
end proc:

#--
AllZeroElems:=proc(hypero::procedure,H::set,$)::set;
local T::set,zero;
T:={};
for zero in H do
if IsZeroElems(hypero,H,zero) then
T:=T union {zero};

end if;
end do;
return T;
end proc:

#--
IsRightSimplifable:=proc(hypero::procedure,H::set,a,$)::boolean;
local b::boolean,x,y;
b:=true;
for x in H do
for y in H do
if ((aob(hypero,x,a)=aob(hypero,y,a)) and x<>y) then
b:=false;
break;

end if;
end do;

end do;
return b;
end proc:

#--
AllRightSimplifable:=proc(hypero::procedure,H::set,$)::set;
local T::set,a;
T:={};

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 67

for a in H do
if IsRightSimplifable(hypero,H,a) then
T:=T union {a};

end if;
end do;
return T;
end proc:

#--
IsLeftSimplifable:=proc(hypero::procedure,H::set,a,$)::boolean;
local b::boolean,x,y;
b:=true;
for x in H do
for y in H do
if ((aob(hypero,a,x)=aob(hypero,a,y)) and x<>y) then
b:=false;
break;

end if;
end do;

end do;
return b;
end proc:

#--
AllLeftSimplifable:=proc(hypero::procedure,H::set,$)::set;
local T::set,a;
T:={};
for a in H do
if IsLeftSimplifable(hypero,H,a) then
T:=T union {a};

end if;
end do;
return T;
end proc:

#--
IsLeftAbsorb:=proc(hypero::procedure,H::set,a,$)::boolean;
local b::boolean,x;
b:=true;
for x in H do
if (not (a in aob(hypero,a,x))) then
b:=false;
break;

end if;
end do;
return b;
end proc:

68 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

#--
AllLeftAbsorb:=proc(hypero::procedure,H::set,$)::set;
local T::set,a;
T:={};
for a in H do
if IsLeftAbsorb(hypero,H,a) then
T:=T union {a};

end if;
end do;
return T;
end proc:

#--
IsRightAbsorb:=proc(hypero::procedure,H::set,a,$)::boolean;
local b::boolean,x;
b:=true;
for x in H do
if (not (a in aob(hypero,x,a))) then
b:=false;
break;

end if;
end do;
return b;
end proc:

#--
AllRightAbsorb:=proc(hypero::procedure,H::set,)::set;
local T::set,a;
T:={};
for a in H do
if IsRightAbsorb(hypero,H,a) then
T:=T union {a};

end if;
end do;
return T;
end proc:

#--

4. Conclusion

In this paper, first, we presented two methods to define a hypergroupoid by algo-
rithm (subsection 3.1). These methods are simple, but any method can be used
for this task, as long as the number and type of inputs and outputs are respected.
Then, we presented algorithms for finding some specific elements in hypergroupoids
(subsection 3.2). These specific elements are: scalars, scalar identities, identities,

Mathematics Interdisciplinary Research 10 (1) (2025) 49− 70 69

inverses, zero elements, right simplifiable elements, left simplifiable elements, left
absorbing-like elements and right absorbing-like elements.

Although, in this paper, all algorithms are presented for algebraic hyperstruc-
tures with one hyperoperation, but we can develop algorithms for algebraic hy-
perstructures with several operations and hyperoperations by defining procedures
corresponding to each operation or hyperoperation in the algebraic hyperstructure
and using the algorithms of this paper, both as a template and as a subroutine,
for newer algorithms.

The complexity and optimization of the algorithms were not among the goals
of the paper, so we did not study them. But these issues can be a suitable topic
for future research. Also, we did not pay attention to the application of these algo-
rithms in pure and interdisciplinary research. These issues can also be investigated
in future research. Presenting algorithms based on definitions helps to understand
their performance when applying definitions on algebraic hyperstructures. It can
help to teach the concepts of algebraic hyperstructures.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.

References
[1] F. Marty, Sur une generalization de la notion de groups, 8th congress Math.

Scandinaves, Stockholm, (1934) 45− 49.

[2] B. Davvaz and V. Leoreanu-Fotea, Hypergroup Theory, World Scientific, 2022.

[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.12.2, 2022, https://www. gap-system. org.

[4] H. Aghabozorgi, M. Jafarpour, M. K. Dolatabadi and I. Cristea, An algorithm
to compute the number of Rosenberg hypergroups of order less than 7, Ital.
J. Pure Appl. Math. 42 (2019) 262− 270.

[5] M. B. Safari, B. Davvaz and V. Leoreanu-Fotea, Enumeration of 3- and 4-
hypergroups on sets with two elements, European J. Combin. 44 (2015) 298−
306, https://doi.org/10.1016/j.ejc.2014.08.01.

[6] G. Nordo, An algorithm on number of isomorphism classes of hypergroups of
order 3, Ital. J. Pure Appl. Math. 2 (1997) 37− 42.

[7] C. G. Massouros and C. Tsitouras, Enumeration of hypercompositional struc-
tures defined by binary relations, Ital. J. Pure Appl. Math. 28 (2011) 43−54.

[8] I. Cristea, M. Jafarpour, S. S. Mousavi and A. Soleymani, Enumeration
of rosenberg hypergroups, Comput. Math. Appl. 60 (2010) 2753 − 2763,
https://doi.org/10.1016/j.camwa.2010.09.027.

70 A. Pourhaghani et al. / Algorithms for Finding Specific Elements in...

[9] C. Tsitouras and C. G. Massouros, Enumeration of rosenberg-type hyper-
compositional structures defined by binary relations, European J. Combin.
33 (2012) 1777− 1786, https://doi.org/10.1016/j.ejc.2012.03.032.

[10] C. Tsitouras and C. G. Massouros, On enumeration of hyper-
groups of order 3, Comput. Math. Appl. 59 (2010) 519 − 523,
https://doi.org/10.1016/j.camwa.2009.06.013.

[11] S. I. Spartalis and C. Mamaloukas, Hyperstructures associated
with binary relations, Comput. Math. Appl. 51 (2006) 41 − 50,
https://doi.org/10.1016/j.camwa.2005.07.011.

[12] J. Park and S.-C. Chung, On algorithms to compute some Hv-
groups, Korean J. Comput. Appl. Math. 7 (2000) 433 − 453,
https://doi.org/10.1007/BF03012204.

[13] B. Davvaz and T. Vougiouklis, A Walk Through Weak Hyperstructures, World
Scientific Publishing Company, Singapore, 2018.

[14] B. Davvaz, Semihypergroup Theory, Academic Press, 2016.

[15] B. Davvaz, A. Dehghan Nezhad and M. M. Heidari, Inheritance exam-
ples of algebraic hyperstructures, Inform. Sci. 224 (2013) 180 − 187,
https://doi.org/10.1016/j.ins.2012.10.023.

Aboutorab Pourhaghani
Department of Mathematical Sciences,
Yazd University,
Yazd, I. R. Iran
e-mail: pourhaghani@stu.yazd.ac.ir

Seid Mohammad Anvariyeh
Department of Mathematical Sciences,
Yazd University,
Yazd, I. R. Iran
e-mail: anvariyeh@yazd.ac.ir

Bijan Davvaz
Department of Mathematical Sciences,
Yazd University,
Yazd, I. R. Iran
e-mail: davvaz@yazd.ac.ir

	Defining algebraic hyperstructures by algorithm
	Algorithms for finding some specific elements in a hypergroupoid (H,)

