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Abstract

In this article, we analyze a four-dimensional chaotic system, focusing
on bifurcation and the Lyapunov exponent as key characteristics under new
parameter settings. Our main goal is to control the system using a graph-
ical algorithm based on contraction method in dynamical systems. The
controller designed using this method is simpler than most controllers for
chaotic systems. Since chaotic systems are sensitive to initial conditions,
their synchronization and control are essential challenges. The graphic algo-
rithm is used for both controlling and synchronizing the chaotic memristor
system. Also, we utilize the synchronization results for secure communica-
tion, employing master and slave systems as encryption and decryption keys.
The effectiveness of the proposed method is demonstrated through numerical
simulations.
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1. Definitions and notations

Chaos is a concept often used for a nonlinear dynamic. Chaos theory is a math-
ematical tool that extracts beautiful structures from chaos. The origins of chaos
theory were introduced by Henri Poincaré in 1908, who attempted to study an un-
solved problem of Newtonian Laplacian celestial mechanics (the three-body prob-
lem). During this research, Poincaré realized that infinitely complex behavior may
exist in nonlinear systems. Chaos theory was first discussed by MIT meteorologist
Edward Lorenz, who simulated weather patterns on computers in the 1960 [1]. In
recent years, deterministic chaos has been seen as a model in electronic circuits,
laser technology, cardiology, organizations, financial markets, urban communities,
and climate.

Managing and directing chaos is a crucial aspect of our daily routine. To
achieve desired outcomes, it is necessary to control various chaos systems. The
Lyapunov theory has been the basis for controlling most chaotic systems, including
the Chen turbulence system, the Duffing system, and the Genesio-Tesi system
[2–8]. However, a new technique known as contraction has emerged as a viable
alternative to prior stability analysis methods. This method, introduced by Slotine
[9, 10], differs because it does not rely on Lyapunov’s function.

Despite their strong dependence on initial conditions, chaotic systems can
achieve synchronization. In 1990, Carroll and Pecora first investigated the syn-
chronization of two chaotic systems, which has since garnered attention for its
potential use in secure communication [11]. To synchronize and control chaotic
systems, researchers have utilized various methods such as adaptive control, OGY
method, feedback controller, and observer-based control. Despite their complexity,
these methods rely on Lyapunov stability analysis and the linear matrix inequality
approach to ensure asymptotic synchronization [8, 12–17].

A novel technique called contraction analysis draws inspiration from fluid me-
chanics to study the convergence of nonlinear systems. According to this method,
a system is deemed stable if its behavior remains unaffected by initial conditions.
A shrinking system is one where paths converge on each other. By applying
the contraction method, we can determine the controller and synchronization of
chaotic systems. The beauty of this approach lies in its ability to generate a linear
controller for intricate systems.

In 1971 Leon Chua, introduced the fourth circuit element in the concept of a
memristor [18]. In 2008, the Stanley Williams Group of Hewlett-Packard (HP)
announced the first solid-state implementation of a memristor [19]. After that,
the researchers, because they wanted to replace the Chua diode system of the
Chua circuit, focused on building different memristor-based chaotic circuits and
then completing the dynamic analysis. In 2011, Corintoise discovered a chaotic
oscillator containing three flux-controlled memristors through coupling [20]. In
2013, Lee proposed a memristor oscillator based on a Twin-T network [21]. The
inherent nonlinearity of memristors has caused the nonlinear resistance in clas-
sic chaotic, circuits to be replaced with memristors for the design of new chaotic



Mathematics Interdisciplinary Research 10 (1) (2025) 71− 94 73

circuits, and this has caused us to have a rich set of nonlinear behaviors [22–24].
Because mathematical models and designed circuit of memristor cannot be used
in physical applicable problems, active memristor simulator circuits with the same
dynamic behavior as TiO2 memristor have started to work in the literature. Re-
cently, many simulator circuits have been implemented [25]. In 2020, a memristor
simulator model was introduced in the article, which allows the implementation of
other sets of chaotic equations [26]. Recently, due to the importance and interest-
ing features of the memristor system, this system has received more attention. For
example, the authors of [27] discuss the principles of whether nonlinear systems
with memristor functionality can be realized using memristor devices. Recently,
the use of a chaotic oscillator with a memristor to generate chaos with minimum
nonlinearity is discussed; and a new multistage chaotic system with a memristor
and mem capacitor for fractional order is made [28, 29].

According to what has been mentioned and considering the benefits of contrac-
tion and graphical methods, this article introduces a control approach for dynamic
systems utilizing a graphic algorithm based on the contraction method. The pro-
posed method is applied in the synchronization of chaotic systems. Furthermore,
the obtained synchronization results are utilized for secure communication, em-
ploying a master-slave system for encryption and decryption.

The article follows these sections: Section 2, explains the contraction method
and graphical method of contraction. Section 3, introduces the four-dimensional
circuit dynamic system based on a memristor. Section 4, describes and discusses
the control and synchronization of the four-dimensional circuit dynamic system
based on a memristor. In Section 5, secure communication is reviewed, and in
Section 6, security analysis is done. Finally, Section 7, concludes the article.

2. Contraction and graphical system
In this section, we will discuss the notion of contraction and subsequently elaborate
on the graphical algorithm employed to demonstrate contraction.

2.1 Basics of contraction theory
For analyzing the behavior of state variables in a nonlinear system, the contraction
theory is used as a tool, such that paths towards each other in the form of state
space [9, 30]. If we consider two arbitrary paths, in this theory, these two paths
converge and are a so-called nonlinear dynamic system. We will have contraction.
For more details, We state some basic definitions and results of the contraction
theory. For this aim, consider the following nonlinear system:

ẋ = f (x, t) , (1)

where x ∈ Rm×1 is the state vector of the dynamical system (1) and f is a
continuous and differentiable vector function. Let δx be the virtual displacement
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in the state x, which refers to infinitesimal displacements at a fixed time. The
concept of virtual dynamics, based on (1) is defined as follows:

δẋ =
∂f (x, t)

∂x
δx, (2)

By considering this equation, we have:

d

dt

(
δxT δx

)
= 2δxT δẋ = 2δxT

∂f

∂x
δx ≤ 2λm (x, t) δxT δx. (3)

Here, the Jacobian matrix is denoted as J = ∂f
∂x and λm (x, t) is the largest eigen-

value of the symmetric part of the matrix J . If the eigenvalue λm (x, t) is strictly
uniformly negative, and δxT δx represents the distance between the neighboring
trajectories, then any minimal length of ‖δx‖ converges to zero exponentially. By
considering the path integration in (2), it can be inferred that all the system
trajectories in(1) converge to the same trajectory exponentially.

Definition 2.1. Let ẋ = f (x, t) be a dynamical system. If the Jacobian matrix
J = ∂f

∂x is uniformly negative definite (UND) in a region, then the variables of
state space are called contracting in the region.

Definition 2.2. The Jacobian matrix J = ∂f(x, t)
∂x if UND, if there exists a scalar

β > 0, for all x and t ≥ 0 such that ∂f
∂x ≤ −βI < 0.

So, 1
2

(
∂f
∂x + ∂fT

∂x

)
≤ −βI is negative definite [16, 31, 32]. According to the

above definition, in the following theorem, the convergence of two different paths
in the contraction area is obtained [33]:

Theorem 2.3. ([33]). Let C be a convex subset of Rm, and let f (t, x) be in-
finitesimally contracting with contraction rate c2. Then, for any two solutions
x(t) = ϕ (t, 0, ξ) and z(t) = ϕ (t, 0, ζ), the following holds:

| x(t)− z(t) |≤ e−c
2t | ξ − ζ |, ∀t ≥ 0. (4)

In other words, infinitesimal contractility implies global contractility. Accord-
ing to the above definitions and theorem, the main results (without proof) related
to the exponential convergence of paths can be stated as follows:

Lemma 2.4. Let the dynamical system be given as ẋ = f (x, t), any trajectory that
begins within a fixed radius ball centered on a specific trajectory and stays within
a contraction region will stay in that ball and will converge to the given trajectory.
Moreover, if the whole state space region is contracting, then guaranteed the global
exponential convergence to this trajectory.
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To explore the concepts mentioned above, we introduce a coordinate transfor-
mation defined by:

δz = θδx, (5)
Here, θ (x, t) signifies a uniformly invertible matrix. For detailed definitions and
theorems in the extended domain, refer to [31, 32, 34]. In certain systems described
by the representation in (1), the Jacobian matrix ∂f

∂x could be characterized as
negative semi-definite. These systems are called semi-contracting systems, building
upon the extension of definition (2.1). Consequently, utilizing contraction theory,
outcomes can guarantee asymptotic stability for such systems.

2.2 Graphical approach
In this section, a graphical method is considered to check the system contraction.
In this method, non-Euclidean norms and matrix criteria are used to analyze
nonlinear dynamic systems. With this approach, we can graphically determine
whether a system is contracting. This is super useful for designing control strate-
gies to shrink a system or achieve consensus and synchronization among a network
of nonlinear oscillators. One notable aspect of this method is that there is no need
to identify a specific metric to which all trajectories converge. Instead, we focus on
establishing sufficient conditions for the existence of such a metric. This expands
the range of systems to which contraction analysis can be quickly and successfully
applied. According to the discussed topics, this algorithm can be used to design a
controller or synchronization in a network of nonlinear oscillators. This algorithm
was obtained in [11, 35, 36].

Theorem 2.5. ([37, 38]). The continuous-time dynamical system ẋ = f (x, t),
(Rm×1) is contracting, if its Jacobian matrix, J , is satisfied in the following con-
ditions:

• Jii (t, x) < 0, for all i = 1, . . . ,m.

• The graph Gd (A) constructed from J as detailed above does not contain
(directed) loops and βij (t, x)βji ≤ 1.

From the above theorem, we have the following algorithm for the continuous
state system:

2.2.1 Graphical algorithm
The steps of the graphical algorithm are as follows:
Step 1: Obtain the Jacobian matrix of the given system, which is generally state
and time-dependent.

J =
∂f (x, t)

∂x
=


J1,1 J1,2 · · · J1,m
J2,1 J2,2 · · · J2,m
...

...
. . .

...
Jm,1 Jm,2 · · · Jm,m

 . (6)



76 M. Pabasteh et al. / Control and Synchronization of a Chaotic...

Step 2: Construct a directed graph for the Jacobian system. To build this graph,
it is necessary to build the adjacency matrix A with the following conditions:

• initialize A so that aij = 0, for all i, j,

• for all i 6= j, set aij = aji = 1 if either Ji,j(t, x) 6= 0, or Jj,i(t, x) 6= 0.

So far, we have a graph G(A) in which the connection between the vertices is
defined, but its direction is not yet defined [39].
Step 3: Find a directed graph Gd(A) of G(A). For this purpose, we consider the
following relationship:

αij (t, x) =
| Ji,j(t, x) |
| Ji,i(t, x) |

(m− n0i − 1). (7)

Where n0i is the number of zeros in the i-th row of matrix A. In calculating
aij, we must ensure that Ji, i(t, x) is not equal to zero. If Ji, i(t, x) is zero, it is
necessary to manage the structure such that all system parameters Ji, i(t, x) are
non-zero before calculating (7).
After obtaining αij , we determine the direction using the following rule:

• if αij(t, x) < 1 then directed from i to j,

• if αij(t, x) ≥ 1 then directed from j to i.

Since s is time-dependent, the directions of the graph may change over time.
Therefore, because the direction can change, the connection between nodes i and
j is bidirectional.
After the mentioned steps, contraction is guaranteed under the following condi-
tions:

• All elements on the main diagonal of the Jacobian matrix must be negative,
which means Ji,i(t, x) < 0, ∀ i.

• There are no loops in a directed graph for all t.

• for any i 6= j, αij(t, x)αji(t, x) ≤ 1.

Note that when the conditions mentioned above are not satisfied, we can impose
a contraction on the system in the following manner:

• If possible, a control input should be applied to the system so that the
elements on the primary diameter are all negative.

• If possible, a control input should be applied to the system so that the
directions are such that they do not form a loop.

• The direction of the edges between two nodes i, and j should satisfy one of
the following conditions:
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– if αij(t, x) < 1 then directed from i to j,
– if αij(t, x) ≥ 1 then directed from j to i,
– be sure that αij(t, x)αji(t, x) ≤ 1.

Because our system is continuous time, we expressed all the steps of the algorithm
in this way. For a discrete-time, you can refer to [6, 37].

3. The memristor-based four-dimensional system
The concept of memristor as the fourth circuit element was introduced by Leon
Chua back in 1971 [18]. In 2008, the Hewlett Packard (HP) Group under Stanley
Williams announced the first solid-state implementation of the memristor [19].
However, due to its physical and mathematical complexity, a memristor simulator
model was developed in 2020 to facilitate the implementation of other sets of
chaotic equations [26]. The mathematical model of the system is defined as follows:

ẋ1(t) = a1p1x1(t)− a1x3(t)− a1p2x1(t)x24(t),
ẋ2(t) = −a2x3(t),
ẋ3(t) = −a3(x1(t)− x2(t)),
ẋ4(t) = −a4x1(t).

(8)

Where x1, x2, x3, x4 are state variables and a1 = 3.75, a2 = 10, a3 = 1, a4 =
1, p1 = 0.33, p2 = 0.25 are the constant parameters of the system. At these specific
parameter values the system is chaotic. Now, we disscuss the behavior of system
(8) for new parameters. For more details, we will examine attractor, sensitivity,
Lyapunov view, and bifurcation of system (8).

3.1 Attractor and sensivity
An attractor denotes a collection of points that gravitate towards the system’s
orbit as the iteration count increases, essentially representing a stable solution
(equilibrium) towards which the system tends. When trajectories originating from
very similar initial conditions separate quickly, leading to entirely different future
states, it demonstrates that the sensitivity of the chaotic system is dependent on
initial conditions. Sensitivity is a show of chaos and a fundamental characteristic
of chaotic systems. Because initial conditions cannot be measured or specified
with infinite precision, sensitivity to initial conditions in chaotic systems makes
short-term prediction impossible. The outcomes are illustrated in Figures 1 to 4.

3.2. Lyapunov exponent
Lyapunov’s view determines the stability or instability of a system. Lyapunov’s
exponent determines how fast a minimal distance between two states that were



78 M. Pabasteh et al. / Control and Synchronization of a Chaotic...

a2 = 10.5 , a4 = 0.5 a2 = 12 , a4 = 1.5 a4 = 1.5,a2 = 10.5

Figure 1: Attractors of system (8) for a1 = 3.75 , a3 = 1 , p1 = 0.33 , p2 = 0.25.

Figure 2: Sensitivity for a4 = 0.5 for initial conditions (−0.1, 0, 3, 2) and
(−0.1, 0, 2.5, 2).

Figure 3: Sensitivity for a2 = 12 for initial conditions (−0.1, 0, 3, 2) and
(−0.1, 0, 2.5, 2).

Figure 4: Sensitivity for a2 = 10.5, a4 = 0.5 for initial conditions (−0.1, 0, 3, 2)
and (−0.1, 0, 2.5, 2).
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initially closed grows over time. For this, the following formula is used:

F t (x0 + ε)− F t (x0) ≈ εeλ t, (9)

amount of power λ over a long period of time (ideally t→∞) is measured and it
is the Lyapunov exponent. When λ is greater than zero, short distances steadily
increase over time, indicating that the stretching mechanism is active. Conversely,
when λ is less than zero, shorter distances do not continually increase, signifying
that the system ultimately settles into a periodic trajectory [40]. Here, we plot the
Lyapunov exponent for the system (8) for the given values and initial conditions.
Figures 5 and 6 show the results.

Figure 5: Lyaponuv exponent of system (8) for p1 = 0.33, p2 = 0.25, a1 = 3.75,
a3 = 1, a4 = 1.5 and 8 ≤ a2 ≤ 12.

Figure 6: Lyaponuv exponent of system (8) for p1 = 0.33, p2 = 0.25, a1 = 3.75,
a2 = 10.5, a3 = 1 and 0.5 ≤ a4 ≤ 2.

3.3. Bifurcations

Bifurcation signifies a fundamental change in the behavior of a dynamic system by
adjustments in a system parameter. A bifurcation chart illustrates the potential
long-term outcomes of a system variable concerning a system parameter. Now, we
draw the bifurcation for the system (8) for the given values and initial conditions.
Figures 7 and 8 show the bifurcation results.
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Figure 7: Bifurcation diagram of system (8) for p1 = 0.33, p2 = 0.25, a1 = 3.75,
a2 = 10.5, a3 = 1 and 0.5 ≤ a4 ≤ 2.

Figure 8: Bifurcation diagram of system (8) for p1 = 0.33, p2 = 0.25, a1 = 3.75,
a3 = 1, a4 = 1.5 and 8 ≤ a2 ≤ 12.

4. Control and synchronization of memristor chaotic
system

According to the control method proposed in subsection 2.2, in this section we want
to apply the results on the system (8), and we also study the synchronization of
the system (8).

4.1 Control

In Section 3, it is evident that system (8) operates chaotically. Thus, it is impera-
tive to develop a controller for the system. To identify the appropriate controller,
we employ the graphical contraction control technique. The first step in this al-
gorithm involves obtaining the Jacobian matrix of system (8).

J =


a1p1 − a1p2x24 0 −a1 −2a1p2x1x4

0 0 −a2 0

−a3 a3 0 0

−a4 0 0 0

 , (10)
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We can create the adjacency matrix A by using the Jacobian matrix.

A =


0 0 1 1

0 0 1 0

1 1 0 0

1 0 0 0

 , (11)

Now, the direction of the edges of the graph must be specified. For this purpose,
αij(i 6= j) must be calculated according to the algorithm. After calculating αij ,
we will have directed algorithm Gd(A). To calculate αij , the first condition is that
Ji,i must not be zero and, on the other hand, must be negative, so we apply the
first controllers:

u = (u1, u2, u3, u4)
T = (−nx1,−mx2,−kx3,−qx4)T s.t n > 0,m > 0, k > 0, q > 0.

Rewriting the Jacobian matrix by applying new controllers, we write:

J =


a1p1 − a1p2x24 − n 0 −a1 −2a1p2x1x4

0 −m −a2 0

−a3 a3 −k 0

−a4 0 0 −q

 , (12)

Now we calculate αij by applying controllers:

α13 = |−a1|
|a1p1−a1p2x2

4−n|
(4− 2− 1), α31 = |−a3|

|−k| (4− 2− 1),

α14 = |−2a1p2x1x4|
|a1p1−a1p2x2

4−n|
(4− 2− 1), α41 = |−a4|

|−q| (4− 3− 1),

α23 = |−a2|
|−m| (4− 3− 1), α32 = |a3|

|−k| (4− 2− 1).

By comparing the obtained αij , we see that we have trouble calculating α23 and
α41, so we introduce the controllers as follows:

u = (u1, u2, u3, u4)
T = (−nx1,−mx2 + zx4,−kx3,−qx4)T ,

s.t n > 0,m > 0, z > 0, k > 0, q > 0.

We redefine the Jacobian matrix:

J =


a1p1 − a1p2x24 − n 0 −a1 −2a1p2x1x4

0 −m −a2 z

−a3 a3 −k 0

−a4 0 0 −q

 , (13)
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For the Jacobian matrix, we define the adjacency matrix A and calculate αij :

A =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

 , (14)

α13 = |−a1|
|a1p1−a1p2x2

4−n|
(4− 2− 1), α31 = |−a3|

|−k| (4− 2− 1),

α14 = |−2a1p2x1x4|
|a1p1−a1p2x2

4−n|
(4− 2− 1), α41 = |−a4|

|−q| (4− 2− 1),

α23 = |−a2|
|−m| (4− 2− 1), α32 = |a3|

|−k| (4− 2− 1),

α24 = |z|
|−m| (4− 2− 1), α42 = |0|

|−q| (4− 2− 1).

By applying the condition αij(t, x)αji(t, x) ≤ 1 the range of parameters n,m, z, k, q
is determined as follows:

α13α31 ≤ 1 → k ≤ 1, α14α41 ≤ 1 → n > a1p1 = 1.2375, q > 0,
α24α42 ≤ 1 → z < m, α23α32 ≤ 1 → m > 10.

It should be noted that because α14 is dependent on x1 and x4 and the system is
time-dependent, and also the direction of the edge may change with the change of
time, we considered the range of q and n in such a way that the condition of being
negative Ji,i keep and no circle is formed.

1 2

3 4

1 2

3 4

1 2

3 4

A(11) A(14) Gd(A)

4.2 Synchronization

Synchronization means to provide conditions so that the dynamic behavior of two
similar (or different) systems with different initial conditions coincide after the
passage of time. For this purpose, we consider two master and slave systems as
follows: {

ẋ = f (x) ,

ẏ = f (y) + u.
(15)

In synchronization, u is the controller that causes two systems to be synchronized.
That is mean:

lim
t→∞

‖y − x‖ = 0.
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To check the synchronization, we consider the system (8) as the master system
and define the slave system as follows:

ẏ1(t) = a1p1y1(t)− a1y3(t)− a1p2y1(t)y24(t) + u1,

ẏ2(t) = −a2y3(t) + u2,

ẏ3(t) = −a3(y1(t)− y2(t)) + u3,

ẏ4(t) = −a4y1(t) + u4.

(16)

Now, we define the error system between system (8) and (16) as follows:

ei = yi − xi, i = 1, 2, 3, 4

So, we have:
ė1(t) = a1p1e1(t)− a1e3(t)− a1p2(e1(t)e24(t) +G) + u1,

ė2(t) = −a2e3(t) + u2,

ė3(t) = −a3(e1(t)− e2(t)) + u3,

ė4(t) = −a4e1(t) + u4.

(17)

G = 2x4(t)y1(t)y4(t) + y1(t)x
2
4(t)− x1(t)y24(t)− 2x1(t)x4(t)y4(t).

To obtain the system (16) controller, as in the previous section, we use the method
introduced in subsection 2.2. So, we have:

J =
∂f

∂e
=


a1p1 − a1p2e24 0 −a1 −2a1p2e1e4

0 0 −a2 0

−a3 a3 0 0

−a4 0 0 0

 , (18)

Subsequently, the adjacency matrix is defined as follows:

A =


0 0 1 1

0 0 1 0

1 1 0 0

1 0 0 0

 . (19)

To obtain the desired adjacency graph, we define the controller as follows:
u1 = −ne1 → u1 = −n(y1 − x1),
u2 = −me2 + ze4 → u2 = −m(y2 − x2) + z(y4 − x4),
u3 = −ke3 → u3 = −k(y3 − x3),
u4 = −qe4 → u4 = −q(y4 − x4).

(20)
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We have:

J =
∂f

∂e
=


a1p1 − a1p2e24 − n 0 −a1 −2a1p2e1e4

0 −m −a2 z

−a3 a3 −k 0

−a4 0 0 −q

 , (21)

and

A =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

 . (22)

After obtaining the adjacency matrix, we now have to determine the graph’s di-
rection.

α13 = |−a1|
|a1p1−a1p2e24−n|

(4− 2− 1), α31 = |−a3|
|−k| (4− 2− 1),

α14 = |−2a1p2e1e4|
|a1p1−a1p2e24−n|

(4− 2− 1), α41 = |−a4|
|−q| (4− 2− 1),

α23 = |−a2|
|−m| (4− 2− 1), α32 = |a3|

|−k| (4− 2− 1),

α24 = |z|
|−m| (4− 2− 1), α42 = |0|

|−q| (4− 2− 1).

To determine the direction of the graph, considering the αij(t, x)αji(t, x) ≤ 1
condition, we have:

α13α31 ≤ 1 → k ≤ 1, α14α41 ≤ 1 → n > a1p1 = 1.2375, q > 0,
α24α42 ≤ 1 → z < m, α23α32 ≤ 1 → m > 10.

Because α14 is dependent on e1 and e4 and the system is time-dependent and also
the direction of the edge may change with the change of time, so the direction of
the edge between the two vertices of e1 and e4 is considered two-way. Finally, the
system controller (16) is defined as follows:

u = (u1, u2, u3, u4)
T = (−ne1,−me2 + ze4,−ke3,−qe4)T ,

s.t n > 1.25,m > 10, z < m, k ≤ 1, q > 0.

4.3 Numerical simulation
In this section, we present the results obtained using the ’ode45’ MATLAB software
to analyze the control and synchronization operation according to the proposed
controllers.
In Section 3, we showed the chaos of system (8) with parameters a1 = 3.75, a2 =
10, a3 = 1, a4 = 1, p1 = 0.33, p2 = 0.25.

Now, according to the above discussions, we define the control gain for the
system (8) in Table 1:
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Table 1: Controller gain.

Parameters
n = 10
m = 11
z = 10
k = 1
q = 5

The results are shown in Figures 9 to 11.

without controller with controller

Figure 9: System (8) without controller and with controller.

Figure 10: Designed controllers for chaotic system.
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Synchronization synchronization error

Figure 11: Synchronization and synchronization error of chaotic system.

5. Secure commucation

As secure communication using chaos synchronization is a crucial topic in dynamic
systems, this section will focus on the encryption and decryption processes of
the memristor synchronized system. In this method, we consider the transmitter
system (8) with state variables Z(t) = a1x1 + a4x4 that produces chaotic signals
as the primary system and the receiver system (16) with state variable Ẑ(t) =
a1y1 + a4y4. We add the signal M(t) to the chaotic carriers of the transmitter
system Z(t). The receiver, after receiving M(t)+Z(t), subtracts the value of Ẑ(t)
from it and recovers the sent signal. The received signal is received according to
the following relationship:

M̂(t) = Z(t)r − Ẑ(t) =M(t) + Z(t)− Ẑ(t) 'M(t).

The results are shown in Figure 12.

Figure 12: Secure communication based on synchronization for color digital image.
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Original picture

Encrypted 1 Encrypted 2

difference picture decrypted picture

Figure 13: Key sensitivity test.

6. Security analysis

Now, to check the effectiveness of the proposed secure communication plan, we
use key sensitivity analysis, statistical analysis, and speed analysis methods.

6.1 Key sensitivity analysis

In encryption, an efficient method must also be sensitive to the secret key, meaning
that a minimal change in the key causes a significant change in the output. For
sensitivity analysis, we change the key parameter x3 = 3 to x3 = 3 − 10−3. We
obtain the encrypted image from both modes and then we find the difference be-
tween the two encrypted images. The black pixels in the difference image between
the two encoded images represent the same parts of both images. The results
show that the difference ratio is significantly high, which means that the proposed
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algorithm is very sensitive to key parameters. Finally, we get the decryption of the
encrypted image with the parameter x3 = 3 and the parameter x3 = 3− 10−3. As
we can see, only one correct key can decrypt an encrypted image. The sensitivity
of other parameters is similar to x3. Figure 13 shows the results of each step.

6.2 Histogram analysis

Since the image histogram is an important feature in image analysis [41, 42], in
this section, we analyze the color image of Lena and the coded image statistically
in RGB form. The results are shown in Figure 14. As shown in the images, the
histogram of the encrypted image is relatively uniform and significantly different
from the plain image. This which indicates that the encryption algorithm can
effectively scatter the plain information into a random cipher and resist statistical
attacks. That is, it should not provide any clues to use in a statistical analysis
attack on the encrypted image.

Histograms of original picture

Histograms of encrypted picture

Figure 14: Histogram of the original image and encrypted image of Lena.
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Table 2: Comparison of encryption time between our proposed method and an-
other method Encryption system.

Algorithm Encryption Time (seconds)
The proposed method 0.775459

Ref.[43] 3.704
Ref.[37] >10
Ref.[44] 2.901
Ref.[45] 2.3

6.3 Speed analysis

Algorithm execution speed is also an important issue for an executable system. We
implement the proposed algorithm using Matlab R 2016b. The speed performance
has been tested on a computer with 11th Gen Intel(R) Core(TM) i5-1135G7 @
2.40GHz processor, 7.69 GB memory, and 931.51 GB hard disk capacity and Win-
dows 10 operating system. The parameters and algorithm of our proposed method
are different from the algorithm of other methods. By comparing the results of
encrypted designs in Table 2, we can see that the operation speed of our method
is clearly faster for Lena’s image.

7. Conclusion

In this article, the relationship between the contraction control method and the
graphical algorithm method for finding the controller of chaotic systems and then
synchronizing the system is stated. The behavior of the four-dimensional cir-
cuit dynamic system model based on the proposed parameter memristor has been
investigated according to the initial conditions, including attractor, sensitivity,
Lyapunov exponent, and bifurcation of the system. The graphical method algo-
rithm is implemented on the memristor system for control and synchronization.
The power and efficiency of the proposed method are shown by numerical sim-
ulation. Finally, Lena’s color image encoding based on the chaotic system has
been studied and safety performance analysis including sensitivity key analysis,
histogram analysis, and speed analysis has been performed. The security analysis
of the proposed overlay secure communication method shows the effectiveness of
the proposed method, that is, it shows that it can be used to encrypt color images
as a very secure method.
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