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Abstract

A variational method for a mixed boundary value problem in mathemat-
ical physics is considered. Using two-field Lagrange multipliers, we would
investigate a variational formulation containing a mixed variational problem
which is equivalent with a problem of saddle point type. With a keen fo-
cus on two-field Lagrange multipliers, we introduce a variational formulation
comprising a mixed variational problem that seamlessly aligns with a saddle
point problem (Problem 3). Consequently, the distinctive solvability of the
weak formulation we propose is intricately governed by the principles of sad-
dle point theory, marking a significant advancement in our understanding of
mathematical physics under challenging conditions.
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1. Introduction

This paper is devoted to a unified and general frame work for a class of non-
smooth nonlinear problems arising from contact mechanics. May be many of
the practical problems in various sciences, including physics and natural sciences
have perturbed at the boundary. Nowadays, solving the turbulent boundary value
problems for nonlinear elastic materials are important. The solutions of there
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differential equations usually will be done in several ways, the inequality method
is in fact a variation which is widely used today. Among others, Joachim’s works
are notable for their use of the KKM (Knaster-Kuratowski-Mazurkiewicz) method
[1]. In fact, by changing the differential equation to a variational inequality and
use of the KKM principle, which is an extension of the known topological fixed
point theorems, and theorem 2-2 in [1], he investigated the existence of the solution
to his problem.

In [2] based on the semi coercive operators and pseudomonotone functions in
the variational inequality they looked for the numerical solution of the problem
with a sequence of approximate solutions and using Moscow convergence, they
showed that the problem V I(A,Φ, g,K) has a solution. In [3], authors proved
the existence and uniqueness of the solution to a class of the history-dependent
subdifferential inclusions. They described the model of contact between the elastic
beam and the reactive obstacle history-dependent hemivariational inequalities.

Migorski studied a class of quasi variational-hemivariational inequalities which
contain a convex potential, a locally Lipschitz superpotential and an implicit ob-
stacle set of constraints in reflexive Banach spaces, to show the existence and
uniqueness of the solution. He established the compactness of the solution set in
the strong topology [4]. We note that the variational principle of Ekeland, as well
as fixed point theorems and optimal algorithms are used to solve these problems
which are given in [5–7].

The following variational problem:

h(z, v − z) + (v)− (z) ≥ (`, v − z)X , for all v ∈ X, (P)

has been studied by many authors, as variational inequality of the second kind,
where X is a Hilbert space, ` ∈ X, h : X ×X → R and  : X → R are maps under
some condition [8–10]. In fact, in third chapter of [9] the following conditions are
given:

h is a symmetric bilinear map such that:
∃ Mh > 0 : |h(z, v)| ≤Mh‖z‖X‖v‖X for all z, v ∈ X,
∃ mh > 0 : h(v, v) ≥ mh‖v‖2X for all v ∈ X.

 (I)

 is a proper, convex and l.s.c. functional. (II)

Then it is proved that for each ` ∈ X, there exists z ∈ X that is a unique solution
of (P).

The origin of the disturbance (or perturbation) may have come from physical
factors surrounding the system, for instance: passing a heavy car on the road
and causing a vibration in the building causes a disturbance, however small, in a
system being tested or a small amount of energy entering the system from out-
side. Sometimes they make a disturbance in system to get the desired result. To
design and build toy models, it seems very good reasonable if the irregularities,
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heterogeneities, impurities,... are ignored. But it is at least as reasonable that
the stability of the results obtained for homogeneous systems is questionable in
the presence of disorder. This concern exists and many examples of the impact of
impurities and small disorders have been revealed [11–13].

Our aim is to show that the following perturbation Problem 1 has a solution
by the saddle point method.

Problem 1. There exists z : Ω̄ −→ R and σ : Ω̄ −→ RN such that

divσ(x) = f0(x)− αz(x), in Ω, (1)
−σ(x) ∈ ∂ζ(∇z(x)) + β∇z(x), in Ω, (2)
z(x) = 0, on Γ1,

σ(x) · ν(x) = f2(x), on Γ2, (3)
σ(x) · ν(x) ∈ ∂ξ(z(x)), on Γ3, (4)

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary Γ which is
composed of three parts Γ1,Γ2,Γ3, in which their Lebesgue measures are positive.
Also, ν denotes, as usual, the outward normal unit vector which is defined almost
sure on Γ. Moreover “·” denotes the inner product on RN . Suppose that f0 ∈
L2(Ω), f2 ∈ L2(Γ2), β and α are positive parameters, ζ : RN → R and ξ : R→ R
are bounded seminorms such that

∃Mζ > 0 : ζ(sss) ≤Mζ‖sss‖ for all sss ∈ RN ,

∃Mξ > 0 : ξ(t) ≤Mξ|t| for all t ∈ R.

‖ · ‖ as usual represents the Euclidean norm on RN and | · | for the real number’s
absolute magnitude.

Assuming α = 0, this problem reduces to a boundary value problem which
is studied in [14] with a single-field Lagrange coefficient and in [15] with two-
field Lagrange coefficients. Actually αz(x) plays the role of perturbation that we
introduced in Problem 1.

Setting α = 0, ζ ≡ 0 and Γ3 ≡ 0, then we have a classical boundary value
problem that in the theory of electricity, there is a physical significance associated
with that; see Chapter 8 in [16].

The case α = 0, N = 2, ζ ≡ 0 and ξ : R −→ [0,∞), ξ(t) = g|t|, where g is a
positive constant in which∣∣∣∣β ∂z∂ν (x)

∣∣∣∣ ≤ g, β
∂z

∂ν
(x) = −g z(x)

|z(x)|
if z(x) 6= 0 on Γ3,

which is the well known Tresca’s law, Problem 1 reduces to an antiplane frictional
contact model for elastic materials. Friction is described with the Tresca’s law in
Chapter 9 of [9].
In Mechanics, Problem 1 usually uses two-field Lagrange multiplier w̄ = (wΩ, wΓ3

),
where wΩ is relevant to σ in Ω and wΓ3

is relevant to σ on Γ3. Thus, by a
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variational formula we may compute not only z in Ω but also σ in Ω and σ on Γ3

as well.
Here, our focus is for weak solvability of Problem 1 through two Lagrange

coefficient fields. Our proposed approach guides us into addressing saddle point
challenges. Employing Lagrange multiplier techniques in mathematical physics
problems enables the application of modern methods for efficiently approximating
weak solutions, see [17] in which primary-dual active strategy is applied.

2. Notation and preliminaries
The symbols we use here are fairly standard. We list some main concepts and
symbols:
X := {v : v ∈ H1(Ω), γv = 0 a.e. on Γ1}, where γ : H1(Ω)→ L2(Γ) is the trace
operator. γ is a continuous, linear and compact operator; to read more details on
its properties, we refer to [18]. X is a closed subspace of the Hilbert space H1(Ω).
To see this, consider a sequence (vn)n ⊂ X such that vn → v in H1(Ω) as n→∞.
If we show ‖γv‖L2(Γ1) = 0 then v ∈ X,

0 ≤ ‖γv‖L2(Γ1) = ‖γv − γvn + γvn‖L2(Γ1) ≤ ‖γv − γvn‖L2(Γ1) + ‖γvn‖L2(Γ1).

Then

0 ≤ ‖γv‖L2(Γ1) ≤ ‖γv − γvn‖L2(Γ) ≤ cE‖v − vn‖H1(Ω),

where cE > 0 is a constant in the trace theorem. We will get the desired result
when we pass to the limit as n→∞.

(X, ( , )H1(Ω), ‖ ‖H1(Ω)) is a Hilbert space because it is a closed subspace of a
suitable Hilbert space, see, e.g., [19]. X can be equipped with the following inner
product:

(z, v)X =

∫
Ω

∇z(x) · ∇v(x)dx for all z, v ∈ X,

and the resulting induced norm is

‖v‖X := ‖∇v‖L2(Ω)N for all v ∈ X.

It is straightforward to see that (X, ( , )X , ‖ ‖X) is also a Hilbert space [20]. Using
Poincaré’s inequality, we have

‖z‖L2(Ω) ≤ cG‖∇z‖L2(Ω)N for all z ∈ X,

where cG = cG(Ω,Γ1) > 0, see [21]. This shows the equivalence of the norms ‖ ‖X
and ‖ ‖H1(Ω).

Consider the following Hilbert space:

Y := {ṽ : ṽ ∈ H 1
2 (Γ), ∃ v ∈ X such that ṽ = γv a.e. on Γ},
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whereH
1
2 (Γ) is the set of functions in L2(Γ) which are traces of functions inH1(Ω)

[22]. For specifics regarding fractional spaces at the boundary, one may consult
[23, 24]. As usual the dual of Y will be denoted by Y ′.

We revisit certain tools in saddle point theory that will be utilized in this
research. For more information on saddle point theory and its applications one
can refer to [25, 26].

Definition 2.1. For non-empty sets A0 and B0, a pair (z, w) ∈ A0 ×B0 is called
a saddle point of a bifunctional J : A0 ×B0 → R if

J (z, κ) ≤J (z, w) ≤J (v, w) for all v ∈ A0, κ ∈ B0.

Theorem 2.2. Suppose that V1, V2 are two Hilbert spaces and A1 ⊆ V1, A2 ⊆ V2

are non-empty, closed, convex subsets. If the bifunctional J : A1 × A2 → R
satisfies:

(a) v →J (v, κ) is lower semi-continuous and convex with respect to all κ ∈ A2,

(b) κ→J (v, κ) is upper semi-continuous and concave with respect to all v ∈ A1,

(c) A1 is bounded or lim
‖v‖V1

→∞,v∈A1

J (v, κ0) =∞ for some κ0 ∈ A2,

(d) A2 is bounded or lim
‖κ‖V2

→∞,κ∈A2

inf
v∈A1

J (v, κ) = −∞,

Then J has at least one saddle point.

Proposition 2.3. For non-empty, closed, convex subsets A1 ⊆ V1, A2 ⊆ V2, if
the bifunctional J : A1 × A2 → R satisfies the hypotheses (a), (b), (c) and (d),
then A0 × B0 of saddle points of J is convex, where A0 ⊂ A1 and B0 ⊂ A2.
Moreover,
(e) If v → J (v, κ) is strictly convex for all κ ∈ A2, then A0 is at most a set
with one element.
(f) If κ → J (v, κ) is strictly concave for all v ∈ A1, then B0 is at most a set
with one element.

One can see the proof of Theorem 2.2 and Proposition 2.3 in [25].

3. Main result

Suppose z and σ are functions that satisfy the assumptions of Problem 1. We
multiply relation (1) by a function v ∈ X and after integration we obtain:

1©︷ ︸︸ ︷∫
Ω

∇ · σ(x)v(x) dx =

2©︷ ︸︸ ︷∫
Ω

f0(x)v(x) dx−

3©︷ ︸︸ ︷∫
Ω

αz(x)v(x) dx . (5)
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Using Green’s identities for Sobolev spaces, [10], we get:

1© =

4©︷ ︸︸ ︷
−
∫

Ω

σ(x) · ∇v(x) dx+

5©︷ ︸︸ ︷∫
Γ

σ(x) · ν(x)γv(x) dΓ . (6)

We can write

4© = −
∫

Ω

(σ(x) + β∇z(x)− β∇z(x)) · ∇v(x) dx

=

6©︷ ︸︸ ︷
−
∫

Ω

(σ(x) + β∇z(x)) · ∇v(x) dx +

7©︷ ︸︸ ︷∫
Ω

β∇z(x) · ∇v(x) dx, (7)

from relations (5), (6) and (7) we have:

2©− 3© = 1© = 4©+ 5© = 6©+ 7©+ 5©. (8)

But

5© =

8©︷ ︸︸ ︷∫
Γ1

σ(x) · ν(x)γv(x) dΓ +

9©︷ ︸︸ ︷∫
Γ2

σ(x) · ν(x)γv(x) dΓ

+

10©︷ ︸︸ ︷∫
Γ3

σ(x) · ν(x)γv(x) dΓ .

Since v ∈ X, we get 8© = 0, this means relation (8) becomes

2©− 3© = 6©+ 7©+ 9©+ 10©,

and then

2©− 9© = 7©+ 3©+ 6©+ 10©. (9)

But from (3) we get:

9© =

∫
Γ2

f2(x)γv(x) dΓ.

Here, 〈 , 〉Y×Y ′ will denote the duality pairing. Using Riesz representation theo-
rem, there is a unique element ` ∈ X;

2©− 9© = (`, v)X . (10)
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For simplicity, consider the following three bilinear maps:

φ : X ×X → R, φ(z, v) := 7©+ 3©, (11)
$1 : X ×X → R, $1(v, κ) := (κ, v)X , (12)
$2 : X × Y ′ → R, $2(v, η) := 〈η, γv〉. (13)

Consider w̄ = (wΩ, wΓ3) ∈ X ×Y ′ as two-field Lagrange multiplier, where wΩ and
wΓ3 are defined as follows:

(wΩ, v)X = 6© for all v ∈ X, (14)

〈wΓ3 , k̃〉 =

∫
Γ3

σ(x) · ν(x)k̃(x) dΓ = 10©, for all k̃ ∈ Y. (15)

From (9)-(15), we have:

φ(z, v) +$1(v, wΩ) +$2(v, wΓ3
) = (`, v)X , for all v ∈ X. (16)

We define a form $ : X × (X × Y ′) −→ R by

$(v, w̄) = $1(v, wΩ) +$2(v, wΓ3), (17)

where w̄ = (wΩ, wΓ3) ∈ X × Y ′. Then we can rewrite (16) as follows:

φ(z, v) +$(v, w̄) = (`, v)X , for all v ∈ X. (18)

The following lemma motivates us to replace Problem 1 with Problem 2.

Lemma 3.1. For z and σ which verify Problem 1, the following relations are true

−
∫

Ω

(σ(x) + β∇z(x)) · ∇v(x) dx ≤
∫

Ω

ζ(∇v(x)) dx, for all v ∈ X, (19)

−
∫

Ω

(σ(x) + β∇z(x)) · ∇z(x) dx =

∫
Ω

ζ(∇z(x)) dx. (20)

Proof. Let x ∈ Ω. From (2),

ζ(θθθ)− ζ(∇z(x)) ≥ −(σ(x) + β∇z(x)) · (θθθ −∇z(x)), for all θθθ ∈ RN , (21)

Setting θθθ = 0 in (21), ζ is a seminorm and then

−ζ(∇z(x)) ≥ (σ(x) + β∇z(x)) · ∇z(x).

After integration on Ω,

−
∫

Ω

(σ(x) + β∇z(x)) · ∇z(x) dx ≥
∫

Ω

ζ(∇z(x)) dx. (22)
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Since ζ is a seminorm, considering θθθ = 2∇z(x) in (21),

ζ(∇z(x)) ≥ −(σ(x) + β∇z(x)) · ∇z(x).

Then

−
∫

Ω

(σ(x) + β∇z(x)) · ∇z(x) dx ≤
∫

Ω

ζ(∇z(x)) dx. (23)

From (22) and (23), relation (20) is obtained.
ζ is a seminorm, if we set θθθ = ∇v(x) +∇z(x) in (21) then

ζ(∇v(x)) ≥ −(σ(x) + β∇z(x)) · ∇v(x).

By integrating on Ω the last relation (19) is obtained.

In a similar way to the proof of Lemma 3.1, it can be shown that for z and σ
satisfying the conditions of Problem 1 the following relations are valid:∫

Γ3

σ(x) · ν(x)γv(x) dΓ ≤
∫

Γ3

ξ(γv(x)) dΓ, for all v ∈ X, (24)∫
Γ3

σ(x) · ν(x)γz(x) dΓ =

∫
Γ3

ξ(γz(x)) dΓ. (25)

For next problem, at this moment we consider Λ̄ as set of Lagrange multipliers by

Λ̄ := Λζ × Λξ, (26)

where

Λζ :=
{
κΩ ∈ X : (κΩ, v)X ≤

∫
Ω

ζ(∇v(x)) dx for all v ∈ X
}
, (27)

Λξ :=
{
κΓ3
∈ Y ′ : 〈κΓ3

, w̃〉 ≤
∫

Γ3

ξ(w̃(x)) dΓ for all w̃ ∈ Y
}
. (28)

Equations (14) and (19) imply that wΩ ∈ Λζ . Also wΓ3
∈ Λξ is easily obtained

from (15) and (24). According to (12), (14), (19), (20) and (27) we deduce that

$1(z, κΩ − wΩ) ≤ 0, for all κΩ ∈ Λζ . (29)

Also, from (13), (15), (24), (25) and (28),

$2(z, κΓ3
− wΓ3

) ≤ 0, for all κΓ3
∈ Λξ. (30)

Looking at relations (17), (29) and (30) we get the following result for κ̄ = (κΩ, κΓ3)
and w̄ = (wΩ, wΓ3

)

$(z, κ̄− w̄) ≤ 0, for all κ̄ ∈ Λ̄. (31)
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Problem 2. Find z ∈ X and w̄ ∈ Λ̄ ⊆ X × Y ′ satisfying (18) and (31).

A solution satisfying Problem 2 is designated as a weak solution for Problem 1.
Equivalently we would prove the existence and uniqueness of the solution for the
following problem.

Problem 3. Let (V1, ( , )V1
, ‖ ‖V1

), (V2, ( , )V2
, ‖ ‖V2

) be two Hilbert spaces.
Given ` ∈ V1, find z ∈ V1 and w ∈ Λ ⊆ V2 such that

a0(z, v) + b0(v, w) = (`, v)V1
, for all v ∈ V1, (32)

b0(v, κ− w) ≤ 0, for all κ ∈ Λ, (33)

where Λ is any bounded, closed and convex subset of V2 containing 0V2
.

We assume that a0 : V1 × V1 −→ R satisfies (I). Moreover we consider the
following conditions are met,

b0 : V1 × V2 −→ R is a bilinear form such that:
there exists Mb0 > 0 : |b0(v, κ)| ≤Mb0‖v‖V1

‖κ‖V2
for all v ∈ V1, κ ∈ V2.

}
(III)

there exists ι > 0 such that inf
κ∈V2,κ6=0V2

sup
v∈V1,v 6=0V1

b0(v, κ)

‖v‖V1
‖κ‖V2

≥ ι.

(IV)

We note that a0 is continuous, bilinear and V1-elliptic and b0 is continuous bilinear
[20]. The following results are standard, but we will present them here for the sake.
For Problem 3 we would show any solution is a saddle point, where J : V1×Λ→ R
is defined as follows:

J (v, κ) :=
1

2
a0(v, v) + b0(v, κ)− (`, v)V1

, for all v ∈ V1, κ ∈ Λ. (34)

According to Proposition 1.30 in [10] since a0 is a continuous, bilinear, symmet-
ric and V1-elliptic form (thus, a positive form), so v → a0(v, v) is lower semi-
continuous and strictly convex. Then we deduce that J is lower semi-continuous
and strictly convex with respect to the first argument. It is well-known that J
displays upper semi-continuity and concavity in its second argument, [15].

Lemma 3.2. (z, w) ∈ V1 × Λ is a solution for Problem 3 if and only if it be a
saddle point for J .

Proof. For a solution (z, w) ∈ V1 × Λ of Problem 3, adding 1
2a0(z, z)− (`, z)V1

to
both sides of (33), then

b0(v, κ− w) +
1

2
a0(z, z)− (`, z)V1

≤ 1

2
a0(z, z)− (`, z)V1

, for all κ ∈ Λ.
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Since b0 is bilinear, so

1

2
a0(z, z) + b0(z, κ)− (`, z)V1 ≤

1

2
a0(z, z) + b0(z, w)− (`, z)V1 , for all κ ∈ Λ,

and

J (z, κ) ≤J (z, w), for all κ ∈ Λ. (35)

From (34), we get:

J (z, w)−J (v, w) =
1

2
a0(z, z) + b0(z, w)− (`, z)V1

− 1

2
a0(v, v)− b0(v, w) + (`, v)V1

.

(36)

Since a0 is a symmetric, bilinear and V1-elliptic form, so from the right hand of
(36) and (32), we obtain:

1

2
a0(z, z) + b0(z, w)− a0(z, z)− b0(z, w)− 1

2
a0(v, v)− b0(v, w) + a0(v, v) + b0(v, w)

=
1

2
a0(z, z)− a0(z, z)− 1

2
a0(v, v) + a0(v, v) = −1

2
a0(z − v, z − v) ≤ 0.

(37)

From relations (36), (37)

J (z, w) ≤J (v, w), for all v ∈ V1.

Hence, (z, w) ∈ V1×Λ is a saddle point for J . We show the converse implication.
Assuming (z, w) ∈ V1×Λ is a saddle point for J and because of (35) and definition
of J , so (33) satisfies. From

J (z, w) ≤J (y, w), for all y ∈ V1.

Then
1

2
a0(z, z)− 1

2
a0(y, y) + b0(z − y, w) + (`, y − z)V1 ≤ 0, for all y ∈ V1. (38)

Setting y = z + sv for s > 0 in (38), then one has

−sa0(z, v)− s2

2
a0(v, v)− sb0(v, w) + s(`, v)V1 ≤ 0, for all v ∈ V1.

Dividing by s > 0 and then computing the limit as s→ 0,

a0(z, v) + b0(v, w) ≥ (`, v)V1 , for all v ∈ V1. (39)

Setting y = z − sv for s > 0 in (38) and divide both sides of it by s > 0, we have:

a0(z, z)− s

2
a0(v, v) + b0(v, w)− (`, v)V1

≤ 0, for all v ∈ V1,
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taking limits as s→ 0,

a0(z, v) + b0(v, w) ≤ (`, v)V1 , for all v ∈ V1. (40)

Adding (39) and (40), we get (32). So, (z, w) ∈ V1 × Λ is a solution of Problem
3.

Theorem 3.3. Suppose that (I) and (III) are satisfied. Then Problem 3 has a
unique solution (z, w) ∈ V1 × Λ. If (IV) holds too, then w is also unique.

For the proof of Theorem 3.3 one can refer to [15].

Theorem 3.4. Problem 1 has a unique weak solution (z, w̄) ∈ X × Λ̄ in first
component.

Proof. Both of Λζ and Λξ dafined in (27) and (28) are nonempty, bounded, closed
and convex subsets, so Λ̄ := Λζ × Λξ is nonempty, bounded, closed and convex
subset of X × Y ′. We set a0 := φ, b0 := $, V1 := X, V2 := X × Y ′ and Λ := Λ̄.
Therefore, Problem 2 changes to Problem 3. Since the conditions of Theorem 3.3,
(I) and (III) are verified, so Problem 2 has a solution (z, w̄) ∈ X × Λ̄ which its
first component is unique and that means (z, w̄) is a weak solution for Problem 1
which is unique in first component.

Since condition (IV) of Theorem 3.3 for Problem 2 is not established in [15],
so it is not possible to give a definite opinion about the uniqueness of the second
component.

Example 3.5. Assume that in Problem 1, Ω = B1(0) ⊂ R3, Γ = {x ∈ Ω : ‖x‖ =
1},Γ1 = {(0, 0, 1)},Γ2 = {x = (x1, x2, x3) ∈ Ω : ‖x‖ = 1, 0 ≤ x3 < 1},Γ3 = {x =
(x1, x2, x3) ∈ Ω : ‖x‖ = 1, x3 < 0},
ζ : R3 → R by ζ(s) = ‖s‖, ξ : R→ R by ξ(t) = |t|,
f2 : R3 → R by f2(x) = ‖x‖2 and f0 : R3 → R by f0(x) = ‖x‖.

Then ∂ζ(s) = {v ∈ R3 : 〈v, s〉 = ‖s‖, ‖v‖∗ ≤ 1} where ‖s‖∗ is the dual norm of
‖.‖, defined as ‖s‖∗ := sup‖v‖≤1 〈s, v〉, [27]. Also by referring to [28] we will find

∂ξ(t) =


[−1, 1] , ξ(t) = 0,

{1}, ξ(t) > 0,

{−1}, ξ(t) < 0.

By rewriting Problem 1, it becomes an attempt to find z : Ω̄ −→ R and σ : Ω̄ −→



106 M. Alizadeh et al. / Existence Solution for a Non-smooth System

R3 such that

divσ(x) = ‖x‖ − αz(x), in Ω,

β∇z(x)− σ(x) ∈
{
v ∈ R3 : 〈v,∇z(x)〉 = ‖∇z(x)‖, ‖v‖∗ ≤ 1

}
, in Ω,

z(x) = 0, on Γ1,

σ(x) · ν(x) = ‖x‖3, on Γ2,

σ(x), ·ν(x) ∈


[−1, 1] , ξ(z(x)) = 0,

{1}, ξ(z(x)) > 0,

{−1}, ξ(z(x)) < 0.

on Γ3.

If we assume φ is the same function in (11), ` in (10) and

J : X → R, J(v) =

∫
Ω

ζ(∇v(x)) dx+

∫
Γ3

ξ(γv(x)) dΓ, (41)

then Problem 1 leads us to (P). It is immediate that φ is a continuous, bilinear,
symmetric, X-elliptic form and J is a proper, convex and l.s.c. functional. Then
conditions (I) and (II) are valid, so the existence and uniqueness is guaranteed.

Proposition 3.6. If z0 ∈ X is the unique solution for (P), then

φ(z0, v) + J(v) ≥ (`, v)X , for all v ∈ X. (42)

Proof. We set v = 0X in (P), then

−φ(z0, z0)− J(z0) ≥ −(`, z0)X . (43)

Set v = 2z0 in (P), then

φ(z0, z0) + J(z0) ≥ (`, z0)X . (44)

From (43) and (44) we have:

φ(z0, z0) + J(z0) = (`, z0)X .

By the last relation and (P), we get (42).

Proposition 3.7. If (z, w̄) ∈ X × Λ̄ is the unique solution of Problem 2 and φ, `
and J are defined as in (10), (11) and (41), then

φ(z, v) + J(v) ≥ (`, v)X , for all v ∈ X. (45)

Proof. From (12), (13), (16), (17), (26), (27) and (28), the inequality (45) will be
conclude.
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