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Laplacian Coefficients of a Forest in Terms of the

Number of Closed Walks in the Forest and its Line
Graph
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Abstract

In this paper, we deal with calculating the laplacian coefficients of a finite
simple graphG with the Laplacian polynomial ψ(G,λ) =

∑n
k=0(−1)

n−kckλ
k.

We also explore the relationship between the number of closed walks in a
graph and a series of its line graphs with the Laplacian coefficients. Our
objective is to find a way to determine the Laplacian coefficients using the
number of closed walks in a graph and its line graph. Specifically, we have
derived the Laplacian coefficients cn−k of a forest F (where 1 ≤ k ≤ 6) in
terms of the number of closed walks in F and its line graph.
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1. Definitions and notations
A simple undirected graph is a pair G = (V,E) consisting of a set V = V (G)
of vertices and a set E = E(G) of 2−element subsets of V . The elements of
E are called edges and the number of elements in V is called the order of G.
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The notations n(G) and m(G) denote the number of vertices and edges of G,
respectively. There are two other graph notations worth mentioning now. The
first one is degG(v) which is the number of edges in G with one end point v and
the second one is degG(e) which is defined as the degree of vertex e in the line
graph of G. Obviously, degG(e) = degG(u) + degG(v) − 2, where u and v are the
end points of edge e.

We use the notation uvw to denote the path of length two such that vertices u
and w have degree one and the vertex v has degree two. In a similar way, we use
the notation uvwx to denote a path of length three.

A graph G is said to be connected if for arbitrary vertices x and y in V ,
there exists a sequence x = x0, x1, . . . , xr = y of vertices such that xixi+1 ∈ E,
0 ≤ i ≤ r− 1. The distance between two vertices u and v in a connected graph G,
dG(u, v), is defined as the length of a shortest path connecting these vertices and
the sum of such numbers is called the Wiener index of G, denoted by W (G) [1].
The hyper-Wiener index is a generalization of the Wiener index. It was introduced
for trees by Randić in 1993 [2] and for a general graph by Klein et al. in [3]. This
topological index is defined as WW (G) = 1

2

∑
u,v∈V (G)(d(u, v) + d2(u, v)).

A subgraph H of a graph G is a graph with a vertex set V (H) and an edge set
E(H), such that V (H) ⊆ V (G) and E(H) ⊆ E(G). We write H 6 G to denote
that H is subgraph of G. If Z ⊆ V , then the induced subgraph G[Z] is the graph
with vertex set Z and the edge set {uv ∈ E | {u, v} ⊆ Z}.

In 1972, Gutman and Trinajstić [4] introduced the first degree-based graph
invariant applicable in chemistry. This invariant is the first Zagreb index and
is defined by the formula M2

1 (G) =
∑
v∈V degG (v)

2. The second Zagreb index
M1

2 (G) =
∑
uv∈E degG (u) degG (v) was introduced by Gutman et al. [5] three

years later in 1975. The complete history of these graph invariants together with
the most important mathematical results about them are reported in [6–8].

The forgotten index of G is another variant of the Zagreb group indices defined
as M3

1 (G) =
∑
v∈V degG(v)3 =

∑
uv∈E [degG(u)2 + degG(v)2] [9]. It can be seen

thatMα
1 (G) =

∑
u∈V degG(u)α, R 3 α 6= 0, 1 is the general form of the first Zagreb

index. Zhang and Zhang [10] obtained the extremal values of the general Zagreb
index in the class of all unicyclic graphs. Milićević et al. [11], reformulated the
first and second Zagreb indices in terms of the edge-degrees instead of the vertex-
degrees. These invariants were defined the first and second reformulated Zagreb
indices defined as EM1(G) =

∑
e∩f 6=∅[degG(e) + degG(f)] =

∑
e∈E degG(e)2 and

EM2(G) =
∑
e∩f 6=∅ degG(e) degG(f), respectively.

A {0, 1}-matrix is a matrix whose entries consist only of the numbers 0 and 1.
Suppose G is a graph with vertex set V = {u1, . . . , un}. The adjacency matrix of G
is a {0, 1}-matrix A(G) = (aij) in which aij = 1 if and only if uiuj ∈ E. It is clear
that A is a real symmetric matrix of order n and so all of its eigenvalues are real.
The matrices D(G) = [dij ] and L(G) = D(G)− A(G) in which dii = deg(ui) and
dij = 0, i 6= j, are called the diagonal and Laplacian matrices of G, respectively.
It is well-known that all eigenvalues of L(G) are non-negative real numbers with
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0 as the smallest eigenvalue.
The Laplacian polynomial of a graph G is one of the most important polyno-

mials associated to a graph. If G is a graph, then the Laplacian polynomial of G is
the characteristic polynomial of L(G). The roots of this polynomial are called the
Laplacian eigenvalues of G. Suppose ψ(G, x) = det(xIn−L) =

∑n
k=0(−1)n−kckx

k

denotes the Laplacian polynomial of G. Since the coefficients of the Laplacian
polynomial have graph theoretical meaning, some authors took into account the
coefficients of this polynomial. For those interested in the latest developments
on the Laplacian polynomial and its coefficients, we recommend exploring the
following publications and their references: [12–22].

Let f be a topological index and G be a graph. For simplifying our arguments,
we usually write f as f(G).

Theorem 1.1. Suppose G is a graph. The following statements hold:

1. (Merris [19] and Mohar [20]) c0(G) = 0, c1(G) = nτ(G), cn(G) = 1 and
cn−1(G) = 2m, where τ(G) is the number of spanning trees of G,

2. (Yan and Yeh [22]) c2(G) = W (G), when G is a tree,

3. (Gutman [18]) c3(G) = WW (G), when G is a tree,

4. (Oliveira et al. [21]) cn−2(G) = 1
2 [4m2−2m−M2

1 ] and cn−3(G) = 1
3! [4m

2(2m
− 3)−6M2

1m+6M2
1 +2M3

1 −12t(G)], where t(G) is the number of triangles
in G.

Suppose λ and ξ are two arbitrary real numbers. We now define two invariants
that are useful in simplifying formulas in our results. These are:

αλ,ξ(G) =
∑
uv∈E

[
degG(u)λ degG(v)ξ + degG(u)ξ degG(v)λ

]
,

Mλ
2 (G) =

∑
uv∈E

(
degG(u) degG(v)

)λ
.

Note that the second Zagreb index is just the case of λ = 1 in Mλ
2 . Let G and H

be graphs. Set SH(G) = {X | X 6 G and X ∼= H}. In [12, 15–17] we proved the
following theorems for the coefficients cn−4(G), cn−5(G), and cn−6(G), when G is
a forest, respectively.

Theorem 1.2. ([12, 15]). Let G be a graph with n vertices and m edges. Then
cn−4(G) = 1

4!

[
4m
(
4m3−12m2 +51m−6M2

1m−33M2
1 +4M3

1 +3
)

+3M2
1

(
17M2

1 −

20
)

+ 72M3
1 − 54M4

1 − 24M1
2

]
− 16

∑
{u,v}⊂V (G)

(
degG(u)

2

)(
degG(v)

2

)
= 1

4!

[
4m
(
4m3−

12m2+3m−6M2
1m+15M2

1 +4M3
1 +3

)
+3
(
M2

1 −2
)2−24M3

1 −6M4
1 −24M1

2 −12
]
.
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Theorem 1.3. ([16]). Let G be a graph with n vertices and m edges. Then
cn−5(G) = 1

5!

[
2m
(
16m4− 80m3 + 60m2− 40M2

1m
2 + 60m+ 180M2

1m+ 40M3
1m+

15(M2
1 )2−120M2

1 −140M3
1 −30M4

1 −120M1
2

)
−20M2

1

(
3M2

1 +M3
1 +6

)
+120M3

1 +

120M4
1 + 24M5

1 + 240M1
2 + 120α1,2

]
.

Theorem 1.4. ([17]). Let G be a graph with n vertices and m edges. Then
cn−6(G) = 1

6!

[
64m6−480m5+720m4+600m3−360m2−480m−720M5

1−2160α1,2−
720α1,3 + 540(M2

1 )2 − 2340m2M2
1 + 2160mM3

1 − 1080M4
1 + 720M1

2 − 120M6
1 −

240M2
1M

3
1m − 720M2

2 + 600M2
1M

3
1 + 1680M2

1m
3 − 810(M2

1 )2m − 1920M3
1m

2 +
1620M4

1m + 3600M1
2m − 720Θ2 − 1260mM2

1 + 720M2
1 + 480M3

1 − 240m4M2
1 +

320m3M3
1 + 360M2

1M
1
2 + 90M2

1M
4
1 + 180(M2

1 )2m2 − 360M4
1m

2 − 1440M1
2m

2 +

288M5
1m+ 1440α1,2m+ 40(M3

1 )2 − 15(M2
1 )3
]
,

where Θ2(G) =
∑
uvw∈SP3

(G) degG(u) degG(w).

2. Laplacian coefficients and the number of closed

walks

Let G be a graph. A walk in G is a sequence W : vi0ei1vi1ei2vi2 . . . eikvik of
vertices and edges of G in such a way that for each j, 0 ≤ j ≤ k − 1, vij and
vij+1

are end points of the edge eij+1
in G. The walk is said to be closed if it

begins and ends at the same vertex. The number of edges of a walk is called the
length of the walk. The number of closed walks of a given length k, is denoted by
Wk(G). It is easy to see that, in each graph G, W1(G) = 0, W2(G) = 2m(G) and
W3(G) = 6t(G), where t(G) is the number of triangles in G.

The line graph of a given graph G is another graph L1(G) that represents the
adjacencies between edges of G. This graph is constructed in this way: any edge
in G will be a vertex in L1(G) and for two edges in G with a common vertex, make
an edge between their corresponding vertices in L1(G). For integer k, k ≥ 2, we
define: Lk(G) = L1(Lk−1(G)) and L0(G) = G.

Theorem 2.1. ( See [23, Theorem 1.9]) Let G be a graph with adjacency matrix
A and let k be a positive integer. Then trAk =Wk(G).

The complete, star and cycle graphs on n vertices are denoted by Kn, Sn and
Cn, respectively. Suppose V (S5) = {v1, v2, v3, v4, v5} and E(S5) = {v1v2, v1v3,
v1v4, v1v5}. The graph S2e

5 is constructed from the graph S5 by adding two edges
v2v3 and v4v5.

Lemma 2.2. Let G be a graph. Then

1. |SP3
(G)| = m(L1(G)),
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2. M2
1 (G) = 2

(
m(G) +m(L1(G))

)
,

3. M3
1 (G) = 2

[
m(G) + 3m(L1(G)) + 3t(L1(G))− 3t(G)

]
.

Proof. 1. Suppose that e1, e2 ∈ E(G) = V (L1(G)). By definition of line graph,
e1e2 ∈ E(L1(G)) if and only if e1 and e2 have a common vertex. This proves
that |SP3(G)| = m(L1(G)).

2. Choose a vertex v in G. The number of subgraphs of G isomorphic to P3 and
middle vertex v is equal to

(
degG(v)

2

)
. Hence |SP3

(G)| =
∑
v∈V (G)

(
degG(v)

2

)
= 1

2M
2
1 (G) − m(G). By the case (1), M2

1 (G) = 2(m(G) + m(L1(G))), as
desired.

3. Suppose that e1, e2, e3 ∈ E(G) = V (L1(G)). By definition, L1(G)[{e1, e2, e3}]
∼= C3 if and only if e1, e2 and e3 construct a cycle of length 3 or the star
graph S4. Therefore, t(L1(G)) =

∑
v∈V (G)

(
degG(v)

3

)
+ t(G) = 1

6 (M3
1 (G) −

3M2
1 (G)+4m)+t(G). We now apply Lemma 2.2(2), to show that t(L1(G)) =

1
6 (M3

1 (G)− 2m(G)− 6m(L1(G))) + t(G). Hence the result follows.

Let Ck : v1v2 . . . vkv1 be the cycle graph on k vertices. The graph Ck[1l1 , 2l2 , . . . ,
klk ] is constructed from Ck by adding li pendant edges, 1 ≤ i ≤ k, to the vertex
vi. For simplicity, if li = 0, for some i, then we omit i0 in our notation.

Lemma 2.3. Let G be a forest with m(G) edges. Then
(i)M4

1 (G) =W4(L1(G)) + 2m(G) + 12m(L1(G)) + 36t(L1(G))− 4m(L2(G)),
(ii)M5

1 (G) =W5(L1(G))+5M4
1 (G)−5M3

1 (G)−15M2
1 (G)+12m(G)−5α1,2(G)+

30M1
2 (G),

(iii)M6
1 (G) =W6(L1(G))−56m(L1(G))+6M5

1 (G)−6α1,3(G)−6M2
2 (G)−60m(G)−

9M3
1 (G)−9M4

1 (G)+61M2
1 (G)−102M1

2 (G)−12m(L2(G))+42α1,2(G)−6Θ2(G)−
6t(L1(G)).

Proof. Let H be an arbitrary graph.

(i) It can be easily seen that

W4(H) = 2m(H) + 4|SP3
(H)|+ 8|SC4

(H)|. (1)

Since G is a forest, |SC4
(L1(G))| = 3|SK4

(L1(G))| = 3
∑
v∈V (G)

(
degG(v)

4

)
=

3
24

(
M4

1 (G)− 6M3
1 (G) + 11M2

1 (G)− 12m(G)
)
, and by Lemma 2.2(2,3),

|SC4
(L1(G))| = 3

24

(
M4

1 (G)− 2m(G)− 14m(L1(G))− 36t(L1(G))
)
. (2)

Also, by Lemma 2.2 (1), |SP3(L1(G))| = m(L2(G)). We now apply Equations
(1) and (2) to deduce that M4

1 (G) = W4(L1(G)) + 2m(G) + 12m(L1(G))
+ 36t(L1(G))− 4m(L2(G)), as desired.
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(ii) By an easy calculation, one can see that

W5(H) = 30t(H) + 10|SC5
(H)|+ 10|SC3[11](L1(G))|. (3)

Since G is a forest, |SC5
(L1(G))| = 12|SK5

(L1(G))| = 12
∑
v∈V (G)

(
degG(v)

5

)
= 12

120 (M5
1 (G) − 10M4

1 (G) + 35M3
1 (G) −50M2

1 (G) + 48m(G)) and |SC3[11]

(L1(G))| =
∑
uv∈E(G)[

(
degG(u)−1

2

)
(degG(u) + degG(v) − 4) +

(
degG(v)−1

2

)
(degG(u) + degG(v) − 4)] = 1

2M
4
1 (G) + 1

2α1,2(G) − 7
2M

3
1 (G) − 3M1

2 (G) +
8M2

1 (G) −8m(G). Now the result follows from Equation (3).

(iii) By some easy calculations, one can see that

W6(H) = 2m(H) + 12|SP3(H)|+ 6|SP4(H)|+ 12|SS4(H)|+ 24t(H)+

48|SC4(H)|+ 36|SK4−e(H)|+ 12|SC4[11](H)|+ 12|SC6(H)|
+ 24|SS2e

4
(H)|. (4)

We now assume that x = uvw ∈ SP3
(G) = E(L1(G)). Then the number of

paths constructed from three edges in L1(G) with x as its middle edge can be
computed via (degG(u) + degG(v)− 3)(degG(v) + degG(w)− 3)− tx(L1(G)),
where tx(L1(G)) denotes the number of triangles constructed on the edge x
of L1(G). Therefore,

|SP4(L1(G))|
=

∑
uvw∈SP3

(G)

[(degG(u) + degG(v)− 3)(degG(v) + degG(w)− 3)− tx(L1(G))]

=
∑

uv∈E(G)

degG(u) degG(v)(degG(u) + degG(v)− 2)

− 3
∑

uv∈E(G)

[degG(u)(degG(v)− 1) + (degG(u)− 1) degG(v)] + Θ2(G)

− 3t(L1(G)) + 9m(L1(G)) +
∑

v∈V (G)

(
degG(v)

2

)
(degG(v)2 − 6 degG(v)).

Now we simplify the last summation to deduce that

|SP4
(L1(G))| = Θ2(G)− 3t(L1(G)) + 9m(L1(G)) + α1,2(G)− 8M1

2 (G)

+ 6M2
1 (G) +

1

2
M4

1 (G)− 7

2
M3

1 (G). (5)

Suppose that e = uv ∈ E(G) = V (L1(G)). The number of stars isomorphic
to S4 in L1(G) with e as its center is computed by

(
degG(u)+degG(v)−2

3

)
and

so

|SS4(L1(G))| = 1

6
M4

1 (G) +
1

2
α1,2(G)− 3

2
M3

1 (G)

− 3M1
2 (G) +

13

3
M2

1 (G)− 4m(G). (6)
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By the proof of Case (1), we have

|SC4
(L1(G))| = 3

24

(
M4

1 (G)− 6M3
1 (G) + 11M2

1 (G)− 12m(G)
)
. (7)

Furthermore, it can be seen that

|SK4−e(L1(G))| = 2|SC4
(L1(G))|. (8)

On the other hand, by definition of complete graphs,

|SCn
(Kn)| = 1

2
(n− 1)!. (9)

Note that four edges in G give an induced subgraph of L1(G) isomorphic to
K4 if and only if those edges has a common vertex. Thus,

|SC4[11](L1(G))| = 3
∑

e=uv∈E(G)

[(degG(u)− 1

3

)
(degG(u) + degG(v)− 5)

+

(
degG(v)− 1

3

)
(degG(u) + degG(v)− 5)

]
(10)

=
1

2
M5

1 (G) +
1

2
α1,3(G)− 11

2
M4

1 (G)− 3α1,2(G)

+
41

2
M3

1 (G)− 67

2
M2

1 (G) + 11M1
2 (G) + 30m(G). (11)

Furthermore, six edges of G give a cycle in L1(G) if and only if those edges
have a common vertex. We now apply Equation (9) to deduce that

|SC6
(L1(G))| = 60|SK6

(L1(G))| = 60
∑

v∈V (G)

(
degG(v)

6

)
=

1

12
M6

1 (G)− 5

4
M5

1 (G) +
85

12
M4

1 (G)− 75

4
M3

1 (G)

+
137

6
M2

1 (G)− 20m(G). (12)

Suppose f = uv ∈ E(G) = V (L1(G)). The number of subgraphs of L1(G)
isomorphic to S2e

5 with the property that f is a vertex of degree 4 can be ob-
tained from

(
degG(u)−1

2

)(
degG(v)−1

2

)
+ 3
(
degG(u)−1

4

)
+ 3
(
degG(v)−1

4

)
. Therefore,

|SS2e
5

(L1(G))| = 1

4
M2

2 (G)− 3

4
α1,2(G) +

39

8
M3

1 (G) +
9

4
M1

2 (G)

− 31

4
M2

1 (G) + 7m(G) +
1

8
M5

1 (G)− 5

4
M4

1 (G). (13)

We now apply Lemma 2.2 and Equations (4), (5), (6), (8), (9), (11), (12)
and (13) to complete the proof of this case. Hence the result comes up.
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Lemma 2.4. ([17]). Let G be a graph with n vertices and m edges. Then
EM2(G) = α1,2 − 6M1

2 + 1
2M

4
1 − 5

2M
3
1 + 6M2

1 − 4m+ Θ2.

Lemma 2.5. Let G be a graph. Then

M1
2 (G) =

1

2
M2

1 (L1(G))− 1

2
M3

1 (G) + 2M2
1 (G)− 2m(G),

EM2(G) =
1

2
M2

1 (L2(G))− 1

2
M3

1 (L1(G)) + 2M2
1 (L1(G))− 2m(L1(G)),

α1,2(G) =
1

3
M3

1 (L1(G))− 1

3
M4

1 (G) + 2M3
1 (G) + 4M1

2 (G)− 4M2
1 (G) +

8

3
m(G),

Θ2(G) =
1

2
M2

1 (L2(G))− 5

6
M3

1 (L1(G)) + 2M2
1 (L1(G))− 2m(L1(G))

− 1

6
M4

1 (G) +
1

2
M3

1 (G) + 2M1
2 (G)− 2M2

1 (G) +
4

3
m(G).

Proof. Suppose that e = uv ∈ E(G). By definition of line graph, degL1(G)(e) =

degG(u) + degG(v) − 2. HenceM2
1 (L1(G)) =

∑
uv∈E(G)(degG(u)+degG(v)−2)2

= M3
1 (G) + 2M1

2 (G) − 4M2
1 (G) + 4m(G) which completes the proof of the first

equality. The second equality follows from EM2(G) = M2(L1(G)) and the first
equality.

Next, we prove the third equality. We haveM3
1 (L1(G)) =

∑
uv∈E(G)(degG(u)+

degG(v)−2)3 = 3α1,2(G)+M4
1 (G)−6M3

1 (G)−12M1
2 (G) + 12M2

1 (G)−8m(G), as
desired. Finally, by Lemma 2.4, Θ2(G) = EM2(G)−α1,2 + 6M1

2 (G)− 1
2M

4
1 (G) +

5
2M

3
1 (G) −6M2

1 (G) + 4m(G). Now, the fourth equality follows from the above
three equalities.

We are now ready to prove the main result of this section.

Theorem 2.6. Let G be a graph, A = A(G) and A1 = A(L1(G)). Then

1. cn−1(G) = trA2 and cn−2(G) = 1
2

[∏1
i=0

(
trA2 − 2i)− trA2

1

]
,

2. cn−3(G) = 1
3!

[∏2
i=0

(
trA2 − 2i)− 3 trA2 trA2

1 + tr(12A2
1 + 2A3

1)− 4 trA3
]
,

3. cn−4(G) = 1
4!

[∏3
i=0

(
trA2 − 2i) − 6(trA2)2 trA2

1 + trA2 tr(60A2
1 + 8A3

1) −

tr(144A2
1 + 48A3

1 + 6A4
1) + 3(trA2

1)2
]
, when G is a forest,

4. cn−5(G) = 1
5!

[∏4
i=0

(
trA2 − 2i) − 10(trA2)3 trA2

1 + (trA2)2 tr(180A2
1 +

20A3
1)−trA2 tr(1040A2

1+280A3
1+30A4

1)+15 trA2(trA2
1)2−trA2

1 tr(120A2
1+

20A3
1) + tr(1920A2

1 + 960A3
1 + 240A4

1 + 24A5
1)
]
, when G is a forest,
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5. cn−6(G) = 1
6!

[∏5
i=0

(
trA2−2i)−15(trA2)4 trA2

1+(trA2)3 tr(420A2
1+40A3

1)

− (trA2)2 tr(4260A2
1 + 960A3

1 + 90A4
1) + 45(trA2 trA2

1)2 − 810 trA2(trA2
1)2

+ trA2 tr(18480A2
1 + 7520A3

1 + 1620A4
1 + 144A5

1) − 15(trA2
1)3 + 3600

(trA2
1)2 − 28800 trA2

1 + trA2
1 tr(1200A3

1 + 90A4
1) + 40(trA3

1)2 − 120 trA2

trA2
1 trA3

1 − tr(19200A3
1 − 7200A4

1 − 1440A5
1 − 120A6

1)
]
, when G is a

forest.

Proof. The proof is derived from Theorems 1.1 to 1.4 and 2.1 and Lemmas 2.2, 2.3
and 2.5 along with some straightforward calculations. For instance, by applying
Theorem 1.1(4), we obtain

cn−2(G) =
1

2

[
4m(G)2 − 2m(G)−M2

1 (G)
]
.

Consequently, employing Lemma 2.2 (2), we deduce that

cn−2(G) =
1

2

[
4m(G)2 − 4m(G)− 2m(L1(G))

]
.

On the other hand, it is known that trA2 = 2m(G) and trA2
1 = 2m(L1(G)).

Therefore, we can conclude that

cn−2(G) =
1

2

[ 1∏
i=0

(
trA2 − 2i)− trA2

1

]
.

The proofs for the remaining cases follow a similar pattern, and for brevity, we
have omitted their detailed presentation here.
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