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Abstract

This paper presents a numerical approach for reconstructing the leading
coefficient in an inverse heat conduction problem (IHCP). We consider a
one-dimensional heat equation with known input data, including the initial
condition, a supplementary temperature measurement at the final time, and
two integral observations. By incorporating the terminal condition, the un-
known spatially dependent coefficient is eliminated, reducing the problem to
a nonclassical parabolic equation. The unknown temperature distribution
and its derivatives are approximated and applied to the modified governing
equation, which is then discretized using operational matrices of differentia-
tion. To ensure stable derivative estimation, the method is coupled with a
regularization technique. A least squares scheme is employed to formulate
a nonlinear system of algebraic equations, which is solved using Newton’s
method. The reliability of the proposed solution is demonstrated through
several numerical examples.
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1. Introduction
The present work studies the numerical identification of space-dependent coeffi-
cient a(z) [1, 2] and the temperature H(z, t) satisfying the following parabolic
equation

Ht(z, t) = a(z)Hzz(z, t), (z, t) ∈ Ω, (1)

coupled with the following initial-boundary conditions

H(z, 0) = φ(z), 0 ≤ z ≤ L, (2)∫ L

0

χ1(z)H(z, t)dz = g1(t),

∫ L

0

χ2(z)H(z, t)dz = g2(t), 0 ≤ t ≤ T, (3)

H(z, T ) = ψ(z), 0 ≤ z ≤ L, (4)

where Ω = {(x, t)| 0 ≤ x ≤ L, 0 ≤ t ≤ T} signifies a bounded domain within
R2 and the space and time variables are denoted by z and t, respectively. This
model describes the heat conduction procedure in a given medium [0, L] and a(z)
can be interpreted as the heat capacity or thermal conductivity/diffusivity [3–5].
The functions H(z, t) and a(z) can also be referred to as the piezometric head
in groundwater flow or the pressure in porous media [5]. Concentrating on the
heat conduction process with the time span T , the initial temperature of the
medium is given by φ(z) and the additional temperature measurement at the final
time is available, although it may be imbued with a degree of noise, implying
that the inverse problem is not overdetermined as the function ψ(z) is used to
reconstruct the unknown coefficient a(z). Despite what is seen in the study of
direct or inverse problems in the standard form, namely that Dirichlet or Neumann
boundary conditions are given at least at one of the boundaries of the problem,
we assume that two averages, in space, of the temperature given by g1(t) and
g2(t) are accessible as energy over-specifications [6–8]. The kernel functions χ1(z)
and χ2(z), which are supposed to be positive on the interval [0, L], can affect the
solvability of the problem and certainly challenge numerical techniques to obtain
accurate solutions.

It is assumed that the input data of the problem fulfills the following consis-
tency conditions:∫ L

0

χ1(z)φ(z)dz = g1(0),

∫ L

0

χ2(z)φ(z)dz = g2(0), (5)

∫ L

0

χ1(z)ψ(z)dz = g1(T ),

∫ L

0

χ2(z)ψ(z)dz = g2(T ), (6)

and they are sufficiently smooth to ensure the uniqueness of the solution.
Solving inverse coefficient problems is important in understanding physical

and engineering phenomena such as heat transfer in biological tissues, ground-
water flow guidance, and oil recovery [3, 9, 10]. Achieving accurate and reliable
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numerical solutions for this class of inverse problems has always been the focus
of researchers. However, the retrieval of the time-dependent diffusion coefficient
has received more attention. Analytical investigations into the well-posedness of
the problem of finding the thermal coefficient a(t) in one-dimensional heat equa-
tion with standard and nonlocal boundary conditions were presented in [5, 11–15].
Various numerical approaches such as the finite difference method (FDM) [14, 16],
the Ritz-Galerkin technique [17, 18], the pseudospectral Legendre method [19],
the Chebyshev cardinal functions scheme [20], the finite element method (FEM)
[21], and the Adomian decomposition method (ADM) [22] were applied for the
numerical identification of the time-dependent diffusion coefficient a(t) in IHCPs.

The recovery of the space-dependent coefficient a(z) in Equation (1) or in its
most practical form given by

Ht(z, t) =
∂

∂z

(
a(z)

∂H(z, t)

∂z

)
+ f(z, t), (7)

has attracted much attention recently, both in terms of analysis of the existence
and uniqueness of the solution and from the computational point of view. Regard-
ing theoretical research, we refer to [2, 23] where the existence and uniqueness
conditions of the solution of finding space-wise dependent diffusion coefficient in
parabolic equation (1) are discussed by means of the Schauder fixed-point theo-
rem and maximum when the initial and Dirichlet boundary conditions are applied
to the governing equation and the extra condition is given at the final time. As
the summary of numerical techniques existing in the literature, the interested
reader is referred to the backward Euler and Crank-Nicolson procedure presented
in [2], the iterative fixed point projection method proposed in [4], the polynomial
regression technique applied in [24], the combination of FEM with an iterative
procedure employed in [25], the combination of adjoint problem approach with
conjugate gradient scheme utilized in [26, 27] and the Lagrange-Hermite interpo-
lation method discussed in [28]. An operational matrix approach was proposed
in [29] to identify the unknown coefficient a(z), where the governing equation (7)
was considered, and the boundary conditions and extra overdetermination were
different from Equations (1)-(4). In addition, the extra condition was not satisfied
accurately.

In this paper, through an innovative technique, we find the approximate solu-
tions of unknown functions which accurately satisfy all the initial and boundary
conditions of the problem (1)-(4) and this is the main incentive for applying this
approach since despite the collocation techniques, none of the initial and bound-
ary conditions are approximated. Thus, the computational cost is significantly
reduced. The technique is easy to implement and incorporates an appropriate
regularization technique to ensure the robustness of the scheme.

The rest of the paper is as follows: In Section 2, we discuss the solution proce-
dure for solving the inverse problem. In Section 3, we describe the results of the
numerical simulation. Section 4 includes a conclusion.
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2. Solution procedure
In this section, we provide approximations based on the Legendre polynomials.

First, by applying (4) in (1) we get

a(z) =
Ht(z, T )

ψ′′(z)
, (8)

provided ψ
′′
(z) 6= 0, z ∈ [0, L]. Therefore the governing equation (1) is modified

as the following nonclassical parabolic equation

Ht(z, t) =
Ht(z, T )

ψ′′(z)
Hzz(z, t), (z, t) ∈ Ω. (9)

Taking the following relation into account∫ z

0

∫ y

0

H∗ss(s, t)dsdy = H∗(z, t)−H∗(0, t)− zH∗z (0, t),

and defining

A(t) := H∗(0, t), B(t) = H∗z (0, t), Q(z, t,H∗zz) :=

∫ z

0

∫ y

0

H∗ss(s, t)dsdy,

we conclude
H∗(z, t) = Q(z, t,H∗zz) +A(t) + zB(t). (10)

Multiplying Equation (10) by χ1(z) and integrating with respect to z over [0, L]
and taking into account relation (3) per H∗(z, t), we achieve

g1(t) =

∫ L

0

χ1(z)Q(z, t,H∗zz)dz +A(t)

∫ L

0

χ1(z)dz︸ ︷︷ ︸
:=y1

+B(t)

∫ L

0

zχ1(z)dz︸ ︷︷ ︸
:=y2

. (11)

Doing the same calculations for χ2(z) results

g2(t) =

∫ L

0

χ2(z)Q(z, t,H∗zz)dz +A(t)

∫ L

0

χ2(z)dz︸ ︷︷ ︸
:=y3

+B(t)

∫ L

0

zχ2(z)dz︸ ︷︷ ︸
:=y4

. (12)

Equivalently (
G1(t)
G2(t)

)
=

(
y1 y2

y3 y4

)(
A(t)
B(t)

)
, (13)

where

G1(t) = g1(t)−
∫ L

0

χ1(z)Q(z, t,H∗zz)dz, g2(t)−
∫ L

0

χ2(z)Q(z, t,H∗zz)dz. (14)
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Therefore, if ∆ := y1y4 − y2y3 6= 0, we get

A(t) =
y4G1(t)− y2G2(t)

y1y4 − y2y3
, B(t) =

−y3G1(t) + y1G2(t)

y1y4 − y2y3
. (15)

Accordingly

H∗(z, t) = Q(z, t,H∗zz) +
(y4 − zy3)G1(t) + (zy1 − y2)G2(t)

∆
. (16)

It can be seen that∫ L

0

χ1(z)H∗(z, t)dz = g1(t),

∫ L

0

χ2(z)H∗(z, t)dz = g2(t). (17)

Next, we denote

H̃(z, t) := φ(z) +
t

T
(ψ(z)− φ(z)), (18)

H(z, t) := H̃(z, t) +H∗(z, t)−
(
H∗(z, 0) +

t

T
(H∗(z, T )−H∗(z, 0))

)
. (19)

Taking into account (5)-(6) and paying attention to (16)-(19) it is obvious that

H(z, 0) = φ(z), H(z, T ) = ψ(z),

∫ L

0

χ1(z)H(z, t)dz = g1(t), (20)

∫ L

0

χ2(z)H(z, t)dz = g2(t).

We use Equation (19) to construct the approximation of H(z, t). In this direction,
the functions Q(z, t,H∗zz) and H∗(z, t) are approximated.

Let P>(z) = [p0(z), ..., pN (z)] and S(t) = [q0(t), ..., qN ′(t)]
> be the vectors

including the shifted Legendre polynomials [30–33] pi(z) and qj(t), defined over the
intervals [0, L] and [0, T ], respectively. Characterizing the Legendre polynomials
of degree k by χk(s), s ∈ [−1, 1], then, the shifted Legendre polynomials pk(z)
and qk(t) are given by pk(z) = χk( 2z

L − 1) and qk(t) = χk( 2t
T − 1). We introduce

the approximation of H∗zz(z, t) as:

H∗zz(z, t) ' H∗zz(z, t) = P>(z)KS(t),

including an (N + 1)× (N ′ + 1) matrix of unknown coefficient as:

K =

 k00 · · · k0N ′

...
...

kN0 · · · kNN ′

 . (21)
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Defining P># (z) = [
∫ z

0

∫ y
0
p0(s)dsdy, ...,

∫ z
0

∫ y
0
pN (s)dsdy], we get the approxima-

tion of Q(z, t,H∗zz) as:

Q(z, t,H∗zz) ' Q(z, t,H
∗
zz) = P># (z)KS(t). (22)

Moreover, by denoting

P>χr (z) =

∫ z

0

χr(s)P
>
# (s)ds, r ∈ {1, 2},

we achieve

G1(t) ' G1(t) = g1(t)− P>χ1
(L)KS(t), G2(t) ' G2(t) = g2(t)− P>χ2

(L)KS(t),
(23)

hence

H∗(z, t) ' H∗(z, t) = P># (z)KS(t) +
(y4 − zy3)G1(t) + (−y2 + zy1)G2(t)

y1y4 − y2y3
. (24)

Therefore, from (19) and (24) we get the approximation of the temperature H(z, t)
as follows:

H(z, t) = H̃(z, t) +H∗(z, t)−
(
H∗(z, 0) +

t

T
(H∗(z, T )−H∗(z, 0))

)
. (25)

Recalling that the exact solution H(x, t) satisfies the following residual function

R(z, t,H) := Ht(z, t)−
Ht(z, T )

ψ′′(z)
Hzz(z, t) = 0, (z, t) ∈ Ω, (26)

we aim to discretize this equation, after deriving the approximations of Ht(z, t)
and Hzz(z, t), from (25) as follows:

Ht(z, t) ' Ht(z, t) = P># (z)KDS(t) +
(y4 − zy3)G10(t) + (−y2 + zy1)G20(t)

y1y4 − y2y3

(27)

+
1

T

(
ψ(z)− φ(z)−H∗(z, T ) +H∗(z, 0)

)
,

Hzz(z, t) ' Hzz(z, t) = φ
′′
(z) +

t

T
(ψ
′′
(z)− φ

′′
(z)) (28)

+ P>(z)K

{
S(t)− S(0) +

t(S(0)− S(T ))

T

}
,

where

G10(t) = g
′

1(t)− P>χ1
(L)KDS(t), G20(t) = g

′

2(t)− P>χ2
(L)KDS(t),
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and D is the operational matrix [34] of differentiation of the basis functions ψj(t)
which satisfies the following equation

dk

dtk
S(t) = DkS(t), , k ∈ {1, ..., N ′}. (29)

Following relation can be employed to get the elements of D [35]

q
′

k(t) =
2
√

2k + 1

T

r∗∑
j=0

√
2k − 4j − 1qk−2j−1(t), r∗ ∈ {Z| 2r∗ + 1 ≤ k}. (30)

We substitute the approximations Ht(z, t) and Hzz(z, t) presented by (27) and
(28) in the residual function (26) to get

R(z, t,H) = Ht(z, t)−
Ht(z, T )

ψ′′(z)
Hzz(z, t). (31)

Although a system of algebraic equations in terms of the coefficients {kij}, i =
0, ..., N, j = 0, ..., N ′, can be obtained through the collocation equations as follows

R(zi, tj , H) = 0, zi ∈ [0, L], tj ∈ [0, T ], (32)

in this paper we create it within the least squares problem framework, that is we
calculate the following functional

JR[H] =

∫ L

0

∫ T

0

R2(z, t,H)dtdz, (33)

and then utilize the necessary conditions for optimization in Equation (33) as
follows:

∂JR[H]

∂kij
=

∂

∂kij

∫ L

0

∫ T

0

R2(z, t,H)dtdz = 0, i = 0, ..., N, j = 0, ..., N ′. (34)

Finally, a nonlinear system of equations in terms of elements kij is produced from
(32) or (34) which is solved by Newton’s iteration method.

2.1 On the convergence of the method
Considering the following integro-differential equation

H(z, t) = φ(z) +

∫ t

0

Hs(z, T )

ψ′′(z)
Hzz(z, s)ds, (z, t) ∈ Ω1, (35)

which is equivalent to Equation (1), we present the convergence of the method on
the domain Ω1 = [0, 1] × [0, 1] and assume that the boundary conditions (3) are
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homogeneous, i.e. g1(t) = g2(t) = 0. In this regard, we use the Banach spaces
F (Ω1) = {h : Ω1 → R| ht, hzz, hzzt ∈ C(Ω1)} and

F0(Ω1) =

{
h(z, t) ∈ F (Ω1)|

∫ 1

0

χ1(z)h(z, t)dz =

∫ 1

0

χ2(z)h(z, t)dz = 0

}
,

equipped with the following norm

‖h‖
′

= ‖h‖∞ + ‖ht‖∞ + ‖hz‖∞ + ‖hzz‖∞ + ‖hzzt‖∞.

Considering hzz(z, t), χ1(z), χ2(z) ∈ C(Ω1), the Weierstrass approximation theo-
rem implies that there exist the sequences of polynomials pm,n(z, t), q

[1]
m (z), q

[2]
m (z)

such that(
‖pm,n(z, t)− hzz(z, t)‖∞, ‖q[1]

m (z)− χ1(z)‖∞, ‖q[2]
m (z)− χ2(z)‖∞

)
→
(

0, 0, 0

)
,

(36)
as m, n→∞.

Paying attention to Equation (16), we define

p∗m,n(z, t) = Q#
m,n(z, t) +

(y4 − zy3)G1mn(t) + (zy1 − y2)G2mn(t)

∆
, (37)

where

Q#
m,n(z, t) =

∫ z

0

∫ y

0

pm,n(s, t)dsdy, Gkmn(t) = −
∫ 1

0

q[k]
m (z)Q#

m,n(z, t)dz, k ∈ {1, 2}.

Supposing Γ = sup[0,1]{|χ1(z)|, |χ2(z)|}, from (36) and (37) we have:

|p∗m,n(z, t)−H∗(z, t)| =
∣∣∣∣ ∫ z

0

∫ y

0

pm,n(s, t)− hss(s, t)dsdy (38)

+

(y4 − zy3)

(
G1mn(t)−G1(t)

)
+ (zy1 − y2)

(
G2mn(t)−G2(t)

)
∆

∣∣∣∣
≤ |pm,n(z, t)−hzz(z, t)|+

1

∆

(
(|y4|+|y3|)|G1mn(t)−G1(t)|+(|y1|+|y2|)|G2mn(t)−G2(t)|

)
≤ ‖pm,n(z, t)− hzz(z, t)‖∞

(
1 +

Γ

∆
(|y1|+ |y2|+ |y4|+ |y3|)

)
.

Hence, ‖p∗m,n(z, t) − H∗(z, t)‖∞ → 0 as m,n → ∞. Doing simple calculations
results:∣∣∣∣∂p∗m,n(z, t)

∂z
− ∂H∗(z, t)

∂z

∣∣∣∣ ≤ ‖pm,n(z, t)− hzz(z, t)‖∞
(

1 +
Γ

∆
(|y1|+ |y3|)

)
, (39)
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∣∣∣∣∂p∗m,n(z, t)

∂t
− ∂H∗(z, t)

∂t

∣∣∣∣ ≤ ‖∂pm,n(z, t)

∂t
−hzzt(z, t)‖∞

(
1+

Γ

∆
(|y1|+|y2|+|y4|+|y3|)

)
,

(40)∣∣∣∣∣∂3p∗m,n(z, t)

∂t∂z2
− ∂3H∗(z, t)

∂t∂z2

∣∣∣∣∣ ≤ ‖∂pm,n(z, t)

∂t
− hzzt(z, t)‖∞. (41)

Therefore, we conclude ‖p∗m,n(z, t)−H∗(z, t)‖′ → 0 as m,n→∞ and taking into
account ∫ 1

0

q[1]
m (z)p∗m,n(z, t) =

∫ 1

0

q[2]
m (z)p∗m,n(z, t) = 0,

we claim the following lemma.

Lemma 2.1. the polynomials of space F0(Ω1) are dense in that space.

Next, we dwell on Equation (35) and consider the functional JR∗ :

(
F (Ω1), ‖.‖′

)
→

R as:

JR∗(H) =

∫ 1

0

∫ 1

0

R2
∗(z, t,H)dtdz, (42)

with R∗(z, t,H) = H(z, t)− φ(z)−
∫ t

0
Hs(z,T )

ψ′′ (z)
Hzz(z, s)ds.

Lemma 2.2. JR̄∗ is continuous on the Banach space
(
F (Ω1), ‖.‖′

)
.

Proof. Let h(1) ∈ F (Ω1) and

f = Ω1×[−κ−τ, κ+τ ]5, κ = max{‖h(1)‖∞, ‖h(1)
t ‖∞, ‖h(1)

z ‖∞, ‖h(1)
zz ‖∞, ‖h

(1)
zzt‖∞}, τ > 0.

Denoting eh(1) = (z, t, h(1), h
(1)
t , h

(1)
z , h

(1)
zz , h

(1)
zzt) ∈ f and considering h(2) ∈ F (Ω1)

subject to ‖h(2) − h(1)‖′ < ρ, it can be seen that for small enough value of ρ we
have:

eh(2) = (z, t, h(2), h
(2)
t , h(2)

z , h(2)
zz , h

(2)
zzt) ∈ f.

Furthermore, R∗ is continuous on the compact set f with respect to its arguments,
thus it is uniformly continuous on f. Therefore, given ε > 0, if ρ > 0 is sufficiently
small such that ‖eh(2) − eh(1)‖∞ < ρ, we have |R∗(z, t, h(2)) − R∗(z, t, h(1))| < ε
and |JR∗(h(2))− JR∗(h(1))| < ε.

Theorem 2.3. Let λmn be the minimum of the functional JR∗(H) on

Λm,n(Ω1) = F0(Ω1) ∩ Span{pi(z)qj(t)| i = 0, ...m, j = 0, ..., n}.

Then, limm,n→∞ λmn = 0.
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Proof. By the property of minimum, ∀ ε > 0 , there exists an element h#(z, t) ∈
F0(Ω1) such that

|JR∗(h#)| < ε. (43)

From Lemma 2.2, since JR∗ is continuous on
(
F (Ω1), ‖.‖′

)
, for small enough

ρ > 0 subject to ‖h− h#‖ < ρ, we have

|JR∗(h)− JR∗(h#)| < ε. (44)

Using Lemma 2.1, it is implied that for large enough values ofm and n, there exists
a sequence of polynomials rm,n(z, t) such that ‖rm,n(z, t)−h#(z, t)‖′ < ρ. Finally,
considering umn(z, t) ∈ Λm,n(Ω1) such that JR∗(umn) = λmn and applying (43)
and (44) for umn(z, t) and rm,n(z, t) we get:

0 ≤ JR∗(umn) ≤ JR∗(rm,n) < 2ε.

So,
lim

m,n→∞
λmn = lim

m,n→∞
JR∗(u

mn) = 0.

2.2 Numerical differentiation technique
Assuming N1 as the number of discrete data points zk ∈ [0, L] and considering
ψδ(z) as the measured data of ψ(z) such that max |ψ(zk)−ψδ(zk)| ≤ δ, we utilize
the mollification technique proposed by [36] to compute the function ψ

′′

δ (z). The
procedure is based on the convolution smoothing with a Gaussian mollifier given

by Gσ(t) = exp
− t

2

σ2

σ
√
π

subject to the regularization parameter σ > 0. The main idea
to solve the problem under consideration is based on using the convolution formula(

Gσ ∗ ψ
)

(z) =

∫ ∞
−∞

Gσ(τ)ψ(z − τ)dτ, (45)

and paying attention to the following property∫ ∞
−∞

Gσ(τ)ψ
′′
(z − τ)dτ =

∫ ∞
−∞

G
′′

σ(τ)ψ(z − τ)dτ. (46)

The mollified derivative is obtained as:(
Gσ ∗ ψ

′′

δ

)
(z) =

∫ ∞
−∞

G
′′

σ(τ)ψδ(z − τ)dτ. (47)

After recovering
(
Gσ ∗ ψ

′′

δ

)
(zk) from (47), we apply the curve fitting technique

to get the approximation ψ̂
′′

δ (z) =
∑N2

k=0 µkpk(z). That is we solve the following
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Table 1: The results of ‖abs(H)‖2, ‖re(H)‖2, ‖abs(a)‖2, ‖re(a)‖2 when different
number of parameters N and N ′ and exact boundary data are applied in Exam-
ple 3.1.

(N,N ′) ‖abs(H)‖2 ‖re(H)‖2 ‖abs(a)‖2 ‖re(a)‖2 CPU

(2, 2) 0.000815674 0.000687078 0.00178325 0.0040825 15.96

(4, 4) 2.69633× 10−6 1.93116× 10−6 0.000010265 0.0000230208 48.81

system for the elements µk

∂

∂µk

N1∑
m=1

{
ψ̂
′′

δ (zm)−
(
Gσ ∗ ψ

′′

δ

)
(zm)

}2

= 0, k = 0, 1, ..., N2. (48)

We select the regularization parameter σ such that for given η > 0, the following
inequality is fulfilled

‖R(z, t,H)‖∞ ≤ η.

3. Numerical tests

In this section, we solve three examples. Numerical simulations are implemented
by the Mathematica software version 12.3 where routine command such as "Find-
Root" is used to solve the nonlinear systems of algebraic equations (32) or (34).
Moreover, the functional (33) is calculated by Simpson’s rule. The absolute error
and relative error functions of a(z), H(z, t) termed by abs(a), abs(H) and re(a),
re(H) are used to exhibit the accuracy of the approximate solutions.

Example 3.1. We consider the following system of equations [2]

Ht(z, t) = a(z)Hzz(z, t), (z, t) ∈ [0, 1]× [0, 1], (49)

H(z, 0) = z2 − z + 1, 0 ≤ z ≤ 1, (50)∫ 1

0

cos(z)H(z, t)dz = (cos(1)−sin(1)+1)et,

∫ 1

0

(1+z)H(z, t)dz = 1.25et, 0 ≤ t ≤ 1,

(51)
H(z, 1) = (z2 − z + 1)e, 0 ≤ z ≤ 1, (52)

and solve it to estimate the pair solution (a(z), H(z, t)) = (0.5(z2 − z + 1), (z2 −
z + 1)et).
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Figure 1: Graph of the absolute error for H(z, t) when accurate boundary data
are applied in Example 3.1.

Figure 2: Graph of the relative error for H(z, t) when N = N ′ = 2 and accurate
boundary data are applied in Example 3.1.
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Figure 3: Graph of the absolute error for a(z) when N = N ′ = 2 and accurate
boundary data are applied in Example 3.1.
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Figure 4: Graph of the relative error for a(z) when N = N ′ = 2 and accurate
boundary data are applied in Example 3.1.

Figure 5: Graph of the residual function R(z, t,H) when N = N ′ = 2 and accurate
boundary data are applied in Example 3.1.
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We apply the numerical method of Section 2 in the presence of accurate input
data. To ensure the validity of the solution, the quantities

y1 = 6.48176097, y2 = −2.96947585, y3 = −11.6671697, y4 = 6.5450565,

are calculated to get ∆ = 7.77811 6= 0. In the case N = N ′ = 2, the results
are demonstrated in Figures 1 to 5. The experiment with N = N ′ = 4 is also
performed to see the impact of the greater values of N and N ′, as shown in
Table 1. The results obtained in this example indicate the good performance of
the method in finding accurate approximate solutions.

Example 3.2. Consider the inverse problem presented by equations (1)-(4), de-
fined over the computational domain Ω = [0, 1] × [0, 1] with the following input
data [2]:

φ(z) = z2 + z+ z2e2z, ψ(z) = (z2 + z+ z2e2z)e, χ1(z) = 1, χ2(z) = 1 + z2, (53)

g1(t) =
1

12
et(7 + 3e2), g2(t) =

1

60
et(17 + 30e2). (54)

To check the validity of our estimations, we obtain

y1 = 9, y2 = −6, y3 = −16, y4 = 12, ∆ = 12 6= 0,

and then follow the procedure presented in Section to approximate the exact
solutions

H(z, t) = (z2 + z + z2e2z)et, a(z) =
0.5z(1 + z + ze2z)

1 + (1 + 4z + 2z2)e2z
. (55)

First, we assume that N = N ′ = 4 and no perturbation is applied to the boundary
condition (4). The outcomes are shown in Figures 6 to 8 and Table 2 to observe
the agreement of the approximate solutions with the exact solutions.

Moreover, to incorporate inaccurate boundary data in the computations, we
utilize the formula [37–39] ψδ(zm) = ψ(zm)+δRandomReal[{−1, 1}] with δ = 0.04
(as the percentage of the noise) and use the technique described in Subsection 2.2
with

N1 = 20, N2 = 6, σ = 0.02, η = 0.03,

to generate

ψ̂
′′

δ (z) = 10.9035+32.1172z+70.8554z2+47.0464z3+114.088z4−41.6872z5+53.5672z6.

By utilizing ψ̂
′′

δ (z) in the calculations with N = N ′ = 4, we obtain the results
illustrated in Figures 9 to 11 indicating a reasonable reaction, proportional to the
amount of error in the input data.
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Table 2: The results of re(a) and re(H) when N = N ′ = 4 and exact boundary
data are applied in Example 3.2. The CPU time per seconds for this experiment
is 35.68.

(z, t) re(a) re(H)

(0.1, 0.1) 0.00154922 0.000177055

(0.2, 0.2) 0.000229452 7.52023 ∗ 10−6

(0.3, 0.3) 0.000425337 0.000113969

(0.4, 0.4) 0.000200605 0.000047016

(0.5, 0.5) 7.24903× 10−6 0.000010881

(0.6, 0.6) 0.0000465314 0.0000196079

(0.7, 0.7) 0.0000230428 0.0000132521

(0.8, 0.8) 7.51288 ∗ 10−6 4.07597 ∗ 10−6

(0.9, 0.9) 0.0000133318 2.3156 ∗ 10−6

(1, 1) 0.0000529661 2.78403 ∗ 10−16

Figure 6: Graph of the absolute error for H(z, t) when accurate boundary data
are applied in Example 3.2.
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Figure 7: Graph of the residual function R(z, t,H) when accurate boundary data
are applied in Example 3.2.
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Figure 8: Graph of the absolute error for a(z) when accurate boundary data are
applied in Example 3.2.
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Figure 9: Graphs of the exact and approximate solutions of H(z, t) are pictured
when perturbed boundary data are applied in Example 3.2.
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Figure 10: Graphs of the exact (orange) and approximate (blue) solutions for a(z)
when perturbed boundary data are applied in Example 3.2.
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Figure 11: Graph of the approximate solution of H(z, t) in Example 3.3.
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Figure 12: Graph of the approximate solution of a(z) in Example 3.3.
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Table 3: The values of approximate solutions for a(z) and H(z, t) at zi = ti = i
10 ,

i.e. a( i
10 ) and H( i

10 ,
i

10 ) in Example 3.3. The CPU time per seconds for this
experiment is 71.86.

(z, t) a(z) H(z, t)

(0, 0) −0.232169 1

(0.1, 0.1) −0.352462 1.02601

(0.2, 0.2) −0.516134 0.845193

(0.3, 0.3) −0.542811 0.712643

(0.4, 0.4) −0.471264 0.636488

(0.5, 0.5) −0.410839 0.594199

(0.6, 0.6) −0.383954 0.590887

(0.7, 0.7) −0.316889 0.6301

(0.8, 0.8) −0.172387 0.706367

(0.9, 0.9) −0.0537919 0.824762

(1, 1) 0.0532423 1

Example 3.3. In this example, we aim to find the approximate solution of the
inverse problem (1)-(4) on the computational domain Ω = [0, 1] × [0, 1] with the
following input data

φ(z) = 1, ψ(z) = z2, g1(t) = 1− 2t

3
, g2(t) =

5− 3t

4
, χ1(z) = 1, χ2(z) = 1 + z3.

(56)
The analytical solutions for H(z, t) and a(z) are not available and the input data
(56) are selected according to conditions (5)-(6). Simple calculations yield

y1 =
28

3
, y2 =

−20

3
, y3 =

−50

3
, y4 =

40

3
, ∆ =

40

3
.

Then, we solve the inverse problem using the proposed method with N = N ′ = 6
and get the approximations depicted in Figures 11 and 12. It should be noted
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that in this example, the L2-norm of the residual function R(z, t,H) is equal to
0.0304507. Furthermore, the values of the approximations of a(z) and H(z, t) at
discrete points zi = ti = i

10 are tabulated in Table 3.

4. Conclusion

This paper presents a numerical method based on Legendre polynomials for iden-
tifying the leading coefficient and temperature distribution in a one-dimensional
parabolic equation. The original problem is reformulated as a nonclassical parabolic
equation, wherein approximations of the unknown temperature and its derivatives
are substituted into the updated governing equation. The resulting residual func-
tion is then discretized using the operational matrices of differentiation associated
with Legendre polynomial bases.

This approach accurately satisfies all initial and boundary conditions while
significantly reducing computational effort, as only a small number of basis func-
tions are required to achieve acceptable solutions. To ensure stability in cases with
nonsmooth boundary data, a Gaussian mollifier is incorporated via a mollification
scheme. The convergence of the method is formally proven, and numerical sim-
ulations are provided to illustrate its effectiveness. Unlike previous studies that
focus solely on standard Dirichlet or Neumann boundary conditions, the proposed
method effectively handles nonstandard boundary conditions where traditional
techniques such as finite difference (FDM) and finite element methods (FEM) of-
ten struggle, particularly with integral constraints. In contrast to collocation-based
approaches, our technique offers improved accuracy with reduced computational
complexity. Moreover, the proposed framework is versatile and can be extended
to solve a wide range of direct and inverse problems involving various partial dif-
ferential equations (PDEs) with complex boundary conditions.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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