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Abstract

The investigation of Ricci bi-conformal vector fields and their associated
outcomes is crucial for gaining insights into the geometric and topological
characteristics of the underlying manifolds. The study of conformal vector
fields and their extensions is highly valuable in the realms of geometry and
physics. In this manuscript, we study the topological properties of the Ricci
bi-conformal vector field. The goal of this paper is to find some results of the
Ricci bi-conformal vector fields. We prove that a complete manifold admits
the Ricci bi-conformal vector fields has a finite fundamental group. For this
purpose, we first state the definition and lemma, and then use them to prove
our theorems.
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1. Introduction

Researching conformal vector fields (CVFs) and their generalizations holds signif-
icant importance in the fields of geometry and physics. In this manuscript, we
study the topological properties of the Ricci bi-conformal vector field (RBCVF).
De et al. [1] defined RBCVFs as follows:
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A Riemannian manifold (M, g) is characterized by a vector field X being clas-
sified as an RBCVF if it satisfies certain equations that are defined in terms of
non-zero smooth functions o and 3, applicable to any vector fields Y and Z:

(Lxg)(Y, Z) = ag(Y, Z) + BS(Y, 2), (1)

and
(‘CXS)(Y7Z):aS(Y7Z)+Bg(sz)7 (2)

where the Ricci tensor S of the manifold M is associated with the metric tensor
g, while Lx denotes the Lie derivative taken in the direction of the vector field X.
In [2] and [3], Ricci solitons and RBCVFs on the model space Sol{ and RBCVFs
on Lorentzian Walker manifolds of low dimension have been studied, respectively.

Now, in this paper, the study of complete connected Riemannian manifolds
(M, g) with a vector field X is considered as:

where smooth functions such as o and g are exist, and the expression £xg repre-
sents the Lie derivative of the function g along the vector field X.

In this paper, we apply Myer’s theorem, which states that any two points
in the manifold M can be connected by a geodesic segment with a maximum
length of 77 (refer to [4]). This implies that the manifold is geodesically complete,
meaning that geodesics can be extended indefinitely. The theorem emphasizes the
connection between curvature and the overarching characteristics of manifolds.
In particular, the theorem concludes that the diameter of M is finite. Thus, M
needs to be compact, as a closed and compact ball of finite radius within any
tangent space is mapped onto all of M through an exponential map. Thus, the
outcome indicates that any compact manifold meeting the criteria outlined in
(3) possesses a finite fundamental group. Numerous authors have explored this
subject. For example, Azami investigated complete Ricci-Bourguignon solitons on
Finsler manifolds [5], complete shrinking general Ricci flow soliton systems [6],
and complete shrinking Ricci-Bourguignon harmonic solitons [7]. This paper is a
generalization of William’s work in [8], which in special cases where we can prove
it, yields a Ricci soliton. We present our findings, beginning with the following
definition.

Definition 1.1. Let (M, g) represent a Riemannian manifold. For every point a
located in M, we establish a definition

Dy = maz{0, sup{Sy(£,§) : y € B(a, 1), |[¢]| = 1}}, (4)

where S, is the Ricci tensor of M.
The following theorems are stated
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Theorem 1.2. Let (M, g) be a complete Riemannian manifold that satisfies the
condition stated in (3). For any points a and b within the manifold M, we can
derive the following result

d(a,b) < max{l,ij@(n 1)+ Du + Dy) + ,% (1%l + |Xb|>}, (5)

where a > k1 and = —ko. (In (3), a and B were introduced).
The second theorem is

Theorem 1.3. If (M,g) represents a complete connected Riemannian manifold
that meets the conditions outlined in (3), then it follows that the fundamental group
of M 1is finite.

2. Proofs of our main results

To continue, the following main lemma is needed.

Lemma 2.1. Let (M,g) denote a complete Riemannian manifold, and consider
points a and b within M such that the distance r = d(a,b) > 1. Additionally, let
& represent the shortest geodesic connecting points a and b, which is parametrized
by arclength, then

/T S(5'(5),8 (5))ds < 2(n — 1) + Dy + Dy, (6)
0

This lemma was proved in [4]. Now, by using Myer’s theorem and the above
lemma, according to the following theorem, the upper bound on the distance
between points a and b that depends only on || X|| and D is obtained. Next, we
have the proof of the first theorem as follows:

Proof of Theorem 1.2. Assume § be the minimal geodesic between a and b and
d(a,b) > 1, according to (3), we get

Jo S8 (5):8'(9))ds > [ §(=ag(6'(s),6 () + (Lx9)(6'(5),6 (s))ds.  (7)
Using identity Lxg(Y,Z) = g(Vy X, Z) + g(Y,VzX), the Lie derivative of g, we
have

Lx9(6'(5),6'(5)) = 2.5 9(X.5'(5)) )

Now, by substituting (8) in (7), we infer

’

Jo 5(8(5),8 ())ds > [ 5(—ag(6'(5),8'(5)) + 29(Viy (y X, 8 (5)))ds.  (9)

So, we get

™ , , 7'1 , , d ,
8608 i > [ 50060066 + 20X 5 (s (10)
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now, assume that a > ky and 8 = —ky, we obtain

I S(6'(s),0'(s))ds > ®d(a,b) + k%g(X, 5 (r) — k%g(X, 5'(0))
k

2

td(a,b) + 2| Xsll = 7521 Xl
> prd(a,b) = 21Xl - 22/ Xall. (11)

02

By using Lemma 2.1, we conclude
k 2
d(a,b) < maz{l, é(Q(n = 1)+ Do+ Do) + - ([ Xal| + [ X[}

O
Proof of Theorem 1.3. Consider (M, J) is the Riemannian universal cover of (M, g),
and the lift of X is X, so suppose p: M — M is the universal covering map of M.
Since p is a local isometry, for each z = p(z), p~!(z) is bounbed discrete and closed
set. Every closed and bounded set is a compact set. Therefore, p~!(z) is finite.
Let @ in M, and assume v € m (M) is a deck transformation on M. We know
B(a,1), and B(y(a),1) are isometric, thus D, = D,(4). Also, | Xal| = 1%, @),
and by using Theorem 1.2 to the point @ and (@), we can write

- 2k 4 -
d(a,v(a)) < mazx{l, k—f(y -1+ Dz)+ k—1||Xa||}7 Yy € m(M). (12)

The space M serves as a universal covering space for M, and there exists a bijec-
tive correspondence between the fundamental group 71 (M, z), and the preimage
p~1(z). Then 7y (M, z) is finite. Since M is a connected space, the fundamental
group 71 (M, x) is isomorphic for all points X within M. This indicates that the
fundamental group of M is finite.

O

We now present two examples that apply to the conditions of the proven the-
orems.

Example 2.2. Let M = R" be Euclidean space equipped with the standard flat
Riemannian metric:

n
g= dei ® dx',
i=1

this metric is globally defined, smooth, symmetric and positive-definite. Let X be
the vector field with constant coefficients:

where a® € R. This defines a smooth vector field on R” with constant components.
Therefore, the squared norm of X with respect to the Euclidean metric is:
n
I1X)? = g(X, X) = z:(ai)2 = constant,

i=1
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therefore, || X|| is bounded globally. Also, the Lie derivative of the metric g with
respect to a constant vector field X vanishes £xg = 0, because partial derivatives
of the metric coefficients ( which are constant) vanish, and X has constant coeffi-
cients. Hence, X is a Killing vector field. Now, since R™ with the standard metric
is flat, Ric = 0, thus, for any «, 5:

Lx Ric =0 = aRic+ fg.

So, X is a RBCVF with arbitrary a, 8 (e.g. @« = 8 =0). Also, the manifold R is
simply connected, thus 71 (R™) = 0.

Example 2.3. Suppose S? in spherical coordinates (6,¢) € (0,7) x (0,27) be
equipped with the standard Riemannian metric:

g = do? + sin*0de>.

Let us consider the vector field:

x=2
¢
This vector field is a Killing vector field because the metric g does not depend on
the coordinate ¢. Therefore, Lxg = 0. Also, the squared norm of X with respect
to g is:
o 0
X117 =9(570 57
00" 0¢

since sin?f € [0, 1], the norm || X|| is bounded on S%. Hence, X has finite norm.
Also, the manifold S? is simply connected, so its fundamental group is trivial
71(S?) = 0. This satisfies the hypothesis of many comparison theorems involving
curvature and vector fields. Now, the Ricci tensor on S? is given by Ricg = g,
because S? has constant sectional curvature K = +1, and the Ricci tensor satisfies:

) = sin’6,

Ric=(n—1)K-g=1-g.
Also, since Lxg = 0, and Ricy = g, we have:
Ricg+Lxg =g > My,
for A € (0,1]. Hence, the vector field X satisfies the inequality:
Ricg + Lxg > Ag,

for some A > 0, which means X is an RBCVF.
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