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Abstract

In this paper, a numerical method based on a recursive relation (se-
quence) is presented for numerically solving a class of linear Volterra delay
integral equations (VDIEs), where the recursive relation is obtained from
the considered integral equation itself. For this purpose, first, using the Ba-
nach fixed point theorem, the existence and uniqueness of the solution to the
considered VDIEs are proven. It is also proven that the sequence mentioned
above converges to the solution of the equation. Then, by considering a fi-
nite number of terms of the said sequence, an approximation to the solution
of the equation is obtained. Finally, some numerical examples are given to
verify the accuracy and efficiency of the proposed method.
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1. Introduction

Integral equations are a significant topics in applied mathematics. These equations
are used to model various practical problems in fields such as physics, engineering,
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financial problems, and other applied sciences (see [1-5]).

A class of important integral equations that has many applications and has at-
tracted the attention of many researchers is delay integral equations (DIEs). Many
different methods have been extended to approximate solutions of DEIs. For ex-
ample, in [6], the variational iteration method and in [7], a Taylor collocation
method were extended to solve DIEs. The Haar wavelet method was proposed
for numerical solution of a class of delay differential and delay partial differen-
tial equations in [8], and for delay Volterra-Fredholm integral equations in [9].
Sinc functions were applied for numerical solving of the pantograph Volterra delay
integro-differential equations in [10]. A Tau-like numerical method was developed
for solving fractional delay integro-differential equations in [11]. Delay Volterra
integral equations on a half-line were investigated in [12]. In [13], the existence
of solutions in nonlocal partial functional integro-differential equations with finite
delay in nondense domains was investigated. In [14], solving differential equations
with infinite delay via a coupled fixed point was considered. In [15], fixed point
theorem was applied to prove the uniqueness and stability of solutions for a class
of nonlinear integral equations. In [16], the existence, uniqueness, and numerical
solutions of fractional crossover delay differential equations of the Mittag-Leffler
kernel using the Galerkin algorithm based on shifted Legendre polynomials, were
investigated.

Numerical solution of DIEs using operational matrices of a hybrid of block-pulse
functions and Bernstein polynomials is examined in [17]. It was shown that the
multistep collocation method for delay Volterra integral equations is supercon-
vergence in [18]. In [19], a fitted mesh numerical scheme was extended for a
singularly perturbed delay reaction diffusion problem with integral boundary con-
ditions. And recently, in [20], the collocation method has been extended to solve
delay Volterra integral equations with weakly singular kernels, and its convergence
has been proven. For some other related work, see [21-24].

As mentioned previously, the subject of this paper is to study delay Volterra inte-
gral equations as [25]:

u(t) = g(t) —|—/ k(t,s)u(s)ds, teI=1[0,T], (1)
()
where k € C(Dy) and f € C(I) with

Do ={(t,s):0<0(t) <s<t<T},

while u is unknown function of the equation.
Here, we consider the linear case, 6(t) = qt, 0 < ¢ <1 in (1), that is

t

u(t) = g(t) +/ k(t, s)u(s)ds, tel=10,T). 2)

Most of the available methods for solving integral and differential equations convert
them to a system of algebraic equations. In the current paper, an iterative method
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is used to solve (2). The advantage of using iterative methods is that they do not
require solving a system of algebraic equations. When the matrix is very big and
sparse, iterative methods are preferred.

Definition 1.1. ([25]). The primary discontinuity points corresponding to the
delay function 6(t) =t — 7(t), {& : i > 0} are defined as follows:

0(&it1) = &ip1 —7(&ip1) =&, 1=0,1,---, & =to. (3)

At these points, as the name suggests, solutions to a delay equation will gener-
ally exhibit lower regularity, even if the initial functions are smooth. For instance,
at t = £y = to, the solution remains continuous, but its derivative may be discon-
tinuous.

It can be established that the DVIE (1) admits a unique continuous solution
u € C(to, T], and since in this paper, tg = 0 ( the equation has no primary discon-
tinuity points), so, u € Clto,T], [25].

Further examination of the types of delays and the corresponding discontinuity
points of each can be found in [26].

2. Preliminary results

In this section, some basic concepts and tools which help us in the rest of the paper
are given. They can be found in books on numerical analysis, such as [27, 28§].

Definition 2.1. Suppose V is a Banach space with the norm ||.||y and W C V.
The operator ® : V. — W is called contractive with contractivity constant K &
[0,1), if

[|Pu — Do|ly < K||lu — vy, Vu,ve€V.

The Banach fixed point theorem, as noted in [28], is significant in establishing
the existence and uniqueness of solutions of differential and integral equations.

Theorem 2.2. Suppose that V is a Banach space and W is a nonempty closed
subset of V. and ® : W — W is a contractive mapping with contractivity constant
K €0,1). Then the following results hold:

(a) There exists a unique @ € W such that ®u = 4.

(b) For any ug € W, the sequence {u,} C W generated by

unJrl:(I)uru n=0,1,---,

converges to u, that is
llup, — @l =0, as n —0,

with error bounds as:

n

|Jur — uollv,

K
—ally <
law —ally < 17
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||un_a||\/ < 1 Hun_u'll—1HV7

-K

[lun = allv < Kllun—1 —llv.

3. Main results

In view of Equation (2), we define the operator W as:
t
Wu(t) = g(t) +/ k(t, s)u(s)ds, (4)
qt

so, Equation (2) is converted to
Wu(t) = u(t). (5)

It is obvious that the fixed point of the operator W is the solution of Equation
(2). Therefore, to solve Equation (2), it is sufficient to obtain the fixed point of
the operator W.

Theorem 3.1. Let g € C[0,T] and k € C(Dy). Then there exists some positive
integer m for which W™ is a contraction mapping.

Proof. Define
K = maz{|k(t,s)| : (t,5) € Dy},

we prove by induction that

[Wnu(t) — Wno(t)| < K"(1-¢q)(1 —n(!f) (1Y)

T = wl]. (6)

To this end, we have

t k(t,s)(u(s) —v(s))ds
< Klu—2[|(1 = @)t < Klju—||(1 = )T,

(W™u(t) = Who(t)| =

and assuming (6) for n, we have

k(t, s)(W™u(s) — W"u(s))ds

qt

(1 — —g?) (1 — g™ t
q

n! "

W Hly(t) — WHly()] =

_ K1 —q)(1—¢?)--- (1 — g™t
(n+1)!

[lu = vff¢"
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K" (1-¢)(1-¢*---(1-¢")

< Tn+1 _
< L ol

so (6) is proved. Therefore, assuming

K"(1-¢)(1—=¢*)---(1—¢g")T"
n!

Kn = P
we have
[W"u(t) = W™ (t)| < Kyl|lu —vl||, Vt €1,

which implies
W — W"o|| < K ||u—v]].

Hence, for sufficiently large n, it will be obtained K, < 1, which means that W is
a contractive mapping. O

Now, we give the following theorem from [29].

Theorem 3.2. Suppose V is a Banach space and W is a nonempty closed set
of it, and ® : W — W is continuous. Also, suppose ®™ is a contraction for
some positive integer m. Then ® has a unique fixed point in W. Futhermore, the
iteration method

Upt1 = P, n=0,1,---,

18 convergent.

Remark 1. In view of Theorems 3.1 and 3.2, the sequence

t

Un11(t) = g(t) +/ k(t, s)un(s)ds, n=0,1,---, (7)

qt

will be converge to the solution u of (2). Therefore, for each N, the Nth term of
this sequence (upn(t)) is an approximate solution of (2).
Remark 2. A similar result to Theorem 3.1 also holds for the following integral
equation
qt
u(t) = g(t) + k(t,s)u(s)ds, te€I=1[0,T]. (8)
0

To prove it, we proceed similarly to Theorem 3.1, except that in this case we take

K, as follows
Kn n(n+1)/2Tn
K’ll = q—7
n!
and K is defined similarly to the proof of Theorem 3.1.
In this case, we also have a similar recursive relationship to (7) as:

Un41(t) = g(t) + /0‘1 k(t, s)un(s)ds, n=0,1,---. (9)
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4. Numerical experiments

In this section, we solve some examples by the proposed method. All numerical
results have been obtained by programming in Maple Software 2019 on a personal
computer with a 64-bit Windows 7 operating system, 4/0 GB of RAM, and an
Intel Core 2 Duo @ 2.80GHz processor.

Table 1: Numerical results of Example 4.1.
t q=3 q=3 q=3

N =5 N=T N =5 N=T N =5 N=T7
0.1 0.17e — 14 0.13¢e — 17 | 0.13¢e — 14 0.10e — 17 | 0.72e — 15 0.40e — 18
0.2 0.25¢ — 11 0.18¢—16 | 0.19¢e —11 0.15e —16 | 0.11e — 11 0.69¢ — 17
0.3 0.16e—9 0.5le—14 | 0.12¢e—9 0.39e — 14 | 0.66e — 10 0.21e — 14
0.4 0.27e —8 0.25e—12 | 0.2le—8 0.19e—12 | 0.11e—8 0.98¢ — 13
0.5 0.24e —7 0.46e—11 | 0.18e—7 0.35e—11 | 0.93e—8 0.18¢ — 11
0.6 0.13¢ —6 0.45e—10 | 098¢ —7 0.34e—10 | 0.50e —7 0.17e — 10
0.7 0.52e — 6 0.30e — 9 0.39¢ — 6 0.22e — 9 0.20e — 6 0.11e—9
0.8 0.17le—5 0.14e —8 0.13e — 5 0.11e — 8 0.62e — 6 0.53e — 9
0.9 0.45¢ — 5 0.54e — 8 0.34e — 5 0.41e — 8 0.16e — 5 0.20e — 8
1.0 0.11e — 4 0.18e — 7 0.80e — 5 0.13e — 7 0.38¢ — 5 0.61le — 8

CPU times 10.94s 102.98s 4.38s 39.48s 8.61s 82.90s

Example 4.1. Consider the DVIE

with the exact solution u(t) = e’.

t

We compute the sequence (7) in truncated
form ({u,(t)})_,) for some N as an approximate solution of the Equation (10).
Absolute errors |u(t) — un(t)| are reported in Table 1 and Figure 1, in which u
and up denote the exact and approximate solution, respectively.
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Figure 1: Comparison of absolute errors between N =5 and N = 7 for ¢ = 1/3,
g=1/2 and ¢ = 2/3 , in Example 4.1.

Example 4.2. In this example, we apply the proposed method to solve the fol-
lowing DVIE

u(t) = sin(t) — %sinQ(qt) + /0'1 cos(s)u(s)ds, te][0,1], (11)

where the exact solution is u(t) = sin(t). We proceed as in the previous example
and report absolute errors in Table 2 and Figure 2.
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Table 2: Numerical results of Example 4.2.

t q=04 q=0.38

N=3 N =06 N=3 N=26
0.2 0.11e—8 0.2e—19 | 0.55¢e—6 0.17¢ — 9
0.4 0.70e — 7 0.8e—19 | 0.33e—4 0.31le—10
0.6 0.79¢e —6 0.4e—19 | 0.33¢ —3 0.14¢ —38
0.8 0.43¢ —5 0.19¢—18 | 0.16e —2 0.21e — 8
1.0 0.16e —4 0.11e—17 | 0.53e —2 0.15¢ -7
1.2 0.46e —4 0.36e — 17 | 0.10e —1  0.10e — 6
1.4 0.11e—3 0.22e—16 | 0.26e—1 0.5le—6
1.6 0.24¢ —3 0.10e—15 | 0.43e—1 0.15¢—5
1.8 0.46e —3 0.40e —15 | 0.6le—1 0.34e —5
2.0 0.82¢—3 0.13e—14 | 0.72e—1 0.47¢e—5

CPU times 78.25s 2490s 83.35s 2610s

10764

107124

absolute error

107184

10724

1073

1076

10724

absolute error

10712

10-15

Figure 2: Comparison of absolute errors between N = 3 and N = 3 for ¢ = 0.4
and ¢ = 0.8 , in Example 4.2.

Example 4.3. In this example, we consider the following DVIE

u(t) = g — (=) + /t H(s+ Du(s)ds, t€[0,1], (12)
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where the exact solution is u(t) = H%l For this example, in Table 3 and Figure 3,

we report the maximum norm of the absolute error, which is defined as:

1) — un(t)].
tren[gf]IU() un(t)|

Table 3: Numerical results of Example 4.3.

q=0.2 q=104 q=0.6 q=0.8
N =06 0.3268¢ —3 0.2797¢ —3  0.1847e¢ — 3 0.4546e — 4
CPU times 4.04s 2.29s 3.21s 2.12s
N =28 0.4174e — 5 0.357le—5 0.235le — 5 0.5501e — 6
CPU times 3.60s 7.08s 5.87s 7.97s
N =10 0.3291e — 7 0.2814e —7 0.1850e —7  0.4230e — 8
CPU times 15.08s 16.52s 14.02s 18.27s
N =12 0.1761e — 9 0.1505e — 9 0.9878¢ — 10 0.2230e — 10
CPU times 92.10s 2430s 2950s 2450s

Example 4.4. Consider the DVIE

(t) = (=2 + 1+ 1)et + t(qt — 1)e + / tsuls) ds. (13)

qt

We compute the sequence ({u,(t)}_,) for some N as an approximate solution of
the Equation (13). In other words

t
Up (t) =~ (—t2 +t 4+ 1)e’ +t(qt — 1)e?" + / tsun(s) ds, (14)
qt

=Wup (t)

and let 7, (t) = |un (t)—Wuy, (t)| be the residual function. The value ||r,, (t)||quantifies
the accuracy of the approximate solution. A smaller infinity norm indicates a bet-
ter approximation. Values of ry(t) for N = 2,3 are reported in Table 4 and
Figure 4.
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Figure 3: Comparison of absolute errors between N = 6, N = 8, N = 10, and
N =12 for ¢=0.2, g =0.4, g = 0.6 and ¢ = 0.8 , in Example 4.3.
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Table 4: Numerical results of Example 4.4.

t q=20.3 q=20.5 q=0.7

N =2 N =3 N =2 N =3 N=2 N =3
0.1 0.56e —8 0.84¢ —6 | 0.49¢ —8 0.33e —10 | 0.33e —8 0.33e — 12
0.2 0.74¢e —6 0.12¢—5 | 0.66e—6 0.86e—9 | 0.45e —6 0.38¢ —9
0.3 0.13¢—4 0.20e—5 | 0.12¢—4 0.34e—7 | 0.79e—5 0.23e—7
0.4 0.10e —3 0.38¢ —5 | 0.90e —4 0.63e —6 | 0.6le—4 0.4le—6
0.5 0.49¢e —3 0.65e —5 | 0.44e —3 0.60e —5 | 0.30e —3 0.40e —5
0.6 0.18¢e —2 0.40e —4 | 0.16e —2 0.38e —4 | 0.1le—2 0.25¢ —4
0.7 0.54e —2 0.20e —3 | 0.49¢ —2 0.18¢—3 | 0.34e—2 0.12¢ —3
0.8 0.14e—1 0.79¢e—3 | 0.13e—1 0.7le—3 | 0.89e —2 0.48¢ —3
0.9 0.33¢e —1 0.26e—2 | 0.29e—1 0.23e—2 | 0.2le—1 0.16e—2
1.0 0.69¢e —1 0.76e —2 | 0.62e —1 0.68¢—2 | 0.44e —1 0.46e — 2

CPU times 0.402s 0.578s 0.499s 0.703s 0.879s 0.889s
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Figure 4: Comparison of residual function between N =2 and N = 3 for ¢ = 0.3,
q=0.5and ¢ = 0.7 , in Example 4.4.
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5. Conclusion

In this paper, an iterative method for numerically solving a class of delay Volterra
integral equations was presented. The existence and uniqueness of the solution
and the convergence of the proposed method were also proven. The accuracy of
the proposed method was demonstrated through numerical experiments. Numer-
ical results also confirmed the convergence.

It seems that the proposed method of this paper can be used for other types of
delay integral equations, such as delay Volterra integro-differential equations and
fractional delay Volterra integro-differential equations.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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