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Abstract
This paper explores the estimation of a new power function under Type-II

right censoring using two methods: maximum likelihood estimation (MLE)
and an ensemble machine learning model based on stacking. The study aims
to assess both methods’ effectiveness in estimating various reliability mea-
sures, such as hazard rate, mean residual life, variance residual life, mean
inactivity time, and variance inactivity time. The stacking model integrates
five base models, radial basis function neural network, random forest, Sup-
port Vector Regression (SVR), Multilayer Perceptron (MLP), and gradient
boosting regression trees, with an radial basis function neural network serv-
ing as a meta-learner for final predictions. Numerical experiments compare
the performance of the stacking model against MLE for Type-II censored
data. Results indicate that the stacking model significantly enhances the ac-
curacy of reliability measure predictions, showcasing its potential as a robust
tool for reliability analysis in the context of Type-II censoring.
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1. Introduction
Iqbal et al. in [1] studied a two-parameter new power function (NPF). Cumulative
distribution function and probability density function of the NPF model with
parameters δ and η given by

F (x; δ, η) = 1−
(

1− x
1 + δx

)η
, (1)

and

f(x; δ, η) =
η(δ + 1)(1− x)η−1

(1 + δx)
η+1 , (2)

for 0 < x < 1, δ > −1 and η > 0. Some of valuable reliability measures are
survival function S(x), hazard rate function h(x), cumulative hazard rate function
H(x), reversed hazard rate function r(x), Mills ratio M(x), odd function O(x),
mean residual lifetime δ(x), mean inactivity function δ̃(x), variance residual life
function σ2(x), and variance inactivity time function σ̃2(x). See [2] for a detailed
study on the given reliability measures.

In the following, we introduce the measures and evaluate them for distribution.
The survival function is S(x) = 1−F (x). The hazard (failure) rate function (HRF)
is the probability that an item has survived time x, given that it has survived to
time x and is defined as h(x) = f(x)

S(x) . The reversed hazard rate (RHRF) of X

is defined as r(x) = P (X = x|X ≤ x) = f(x)
F (x) . The r(x) in the discrete case is

interpreted as the conditional probability that a device fails at age x, given that
its lifetime is at most x. The cumulative hazard rate function (CHRF) is defined
as

H(x) = − lnS(x) =

∫ x

0

h(t)dt. (3)

It measures the total amount of risk that has been accumulated until x. Indeed,
the cumulative hazard rate records the number of times that we would theoretically
expect to observe the occurrence of an event. It should be noted that cumulative
hazards must be interpreted based on repeated events regardless of whether the
event of interest is, because of its very nature, repeatedly observable or not.

The reciprocal of the hazard rate is called the Mills ratio (see [3]). The Mills
ratio has several applications in economics, mathematical statistics, and engineer-
ing.

The odd function is given as O(x) = F (x)
S(x) . A useful reliability measure of X is

mean residual life, which is defined as the expectation of the residual life random
variable Xt = (X − t|X > t), given by

µ(x) =
1

S(x)

∫ ∞
x

S(y)dy.
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The mean inactivity time (MIT) function, or mean past lifetime, is an important
reliability measure that has applications in many fields such as survival analysis,
reliability theory, and actuarial studies. Also, MRL is called the mean reversed
residual life function, µ̃(x) = E(x−X|X ≤ x), represents the waiting time elapsed
since the failure of an item on condition that this failure had occurred in (0, x)
and is defined as:

µ̃(x) =
1

F (x)

∫ x

0

F (y)dy.

When discussing the variance of the residual lifetime Xx, it will be assumed that
E(X2) <∞. The variance residual life (VRL) function is

σ2(x) = V ar(X − x|X > x) =
2

S(x)

∫ ∞
x

(t− x)S(t)dt− µ2(x). (4)

Kundu and Nanda in [4] defined the variance of the inactivity time (VIT) as:

σ̃2(x) = V ar(x−X|X ≤ x) = µ̃2(x)− µ̃2(x), (5)

where µ̃2(x) = E[(x−X)2|X ≤ x] = 2
F (x)

∫ x
0
(x− t)F (t)dt.

The measures mentioned above, for the NPF model are respectively given as:

h(x; δ, η) =
η(δ + 1)

(1 + δx)(1− x)
, (6)

H(x; δ, η) = − log

[(
1− x
1 + δx

)η]
, (7)

r(x) =
η(δ + 1)(1− x)η−1

(1 + δx) {(1 + δx)
η − (1− x)η}

, (8)

M(x; δ, η) =
(1 + δx)(1− x)

η(δ + 1)
, (9)

O(x; δ, η) =
(1 + δx)

η − (1− x)η

(1− x)η
, (10)

µ(x) =
(1 + δx)

η

(1− x)η

(
E

∞∑
i=0

Di(B(2 + i, η)−Bx(2 + i, η))

)
− x, (11)

µ̃(x) = x− (1 + δx)
η

(1 + δx)
η − (1− x)η

E

∞∑
i=0

DiBx(2 + i, η), (12)
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σ2(x) =
(1 + δx)

η

(1− x)η

{
E

∞∑
i=0

Di (B(3 + i, η)−Bx(3 + i, η))

}

− 2x

(
E

∞∑
i=0

Di (B(2 + i, η)−Bx(2 + i, η))

)
+ x2 − µ2(x), (13)

σ̃2(x) = x2 +
(1 + δx)

η

(1 + δx)
η − (1− x)η

{
E

∞∑
i=0

Di (B(3 + i, η))

−2x

(
E

∞∑
i=0

Di (B(2 + i, η))

)}
− µ̃2(x), (14)

where in Equations (11), (12), (13) and (14), B(x; δ, η) =
∫ x
0
yδ−1(1− y)η−1dy is

the beta function, E = η(1 + δ), Di = δi
(−η−1

i

)
, and δ > −1, η > 0.

2. Related works
Ensemble methods have gained traction in survival analysis due to their ability
to improve predictive accuracy and handle the complex data structures often en-
countered in survival studies. Here’s an overview of their applications in this field.

One of the most prominent ensemble methods in survival analysis is random
survival forests. This method extends the random forest algorithm to accom-
modate censored data, making it particularly suitable for survival outcomes. Ish-
waran et al. [5] introduced random survival forests, demonstrating its effectiveness
in handling right-censored data and providing variable importance measures that
can guide clinical decision-making. Ensemble methods can enhance traditional
Cox proportional hazards models by combining predictions from multiple models,
improving robustness and accuracy. Rane et al. [6] discussed the integration of en-
semble techniques, highlighting how combining models can yield better predictive
performance than single-model approaches.

Boosting algorithms have also been adapted for survival analysis, allowing for
sequential model building that focuses on misclassified instances. Friedman [7]
introduced gradient boosting machines, which have been applied to survival data
by modifying the loss function to account for censoring. Recent advancements have
also seen the integration of ensemble methods with neural networks for survival
analysis. Katzman et al. [8] developed a deep learning model called DeepSurv,
which uses Cox proportional hazards as a loss function and can be combined with
ensemble techniques to improve performance.

Combining multiple survival models into an ensemble can leverage the strengths
of different methodologies. Wey et al. [9] demonstrated the effectiveness of multi-
model ensembles in survival analysis by combining parametric and non-parametric
models to improve prediction accuracy. Ensemble methods are increasingly applied
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in clinical trials to predict patient outcomes based on complex covariates. Klein-
baum et al. [10] highlighted the potential of using ensemble methods in clinical
settings, emphasizing their ability to improve risk stratification and treatment
decision-making.

Ensemble methods have significantly enhanced survival analysis by improv-
ing predictive accuracy and handling the complexities of censored data. Their
adaptability and robustness make them valuable tools in clinical research and be-
yond (see [11–14]). In this paper, we present an ensemble machine-learning model
specifically designed to approximate the values of functions that assess various
aspects of the lifespan of a particular electronic device. We validate the model’s
effectiveness through experimental studies utilizing the Type-II censored data pro-
vided by [1]. Our results are compared with those from [15], demonstrating that
our stacking-based machine learning model outperforms the Multilayer Perceptron
employed in their work for function approximation.

3. Maximum likelihood estimation (MLE)

MLE is one of the most widely used and important methods in statistics. This
method determines parameter values for which the given observations would have
the highest probability. Additionally, under some regularity conditions, maximum
likelihood estimators are consistent and asymptotically normally distributed (see
[16]).

3.1 Learning NPF with censored data

Type-II censoring is a type of right censoring in which the study continues until the
failure of the first r individuals, where r is an integer that is predetermined (r < n).
For testing of equipment life, often experiments involving Type-II censoring are
used. Here, all items are simultaneously tested, and the test is terminated when r
of the n items have failed. Such an experiment may shorten the test time and save
money because it could take a very long time for all components to fail. Noted
that here r the number of failures and n− r the number of censored observations
are fixed integers and the censoring time tr, the rth ordered lifetime is random.
For a comprehensive overview of common censoring types, including right and left
censoring, refer to the work of Lawlese [17].

When the data are Type-II right censored, the likelihood function for this type
of censored sample can be acquired as follows (see [18]):

L(η, δ) =
n!

(n− r)!

r∏
i=1

η(δ + 1)(1− ti)η−1

(1 + δti)
η+1

(
1− tr
1 + δtr

)η(n−r)
, (15)
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where t1 < t2 < . . . < tr and loglikelihood is

l(η, δ) = ln

{
n!

(n− r)!

}
+ r ln η + r ln(δ + 1) + (η − 1)

r∑
i=1

ln(1− ti) (16)

− (η + 1)

r∑
i=1

ln(1 + δti) + η(n− r) {ln(1− tr)− ln(1 + δtr)} .

To find the likelihood estimates, we differentiate (16) with respect to the parame-
ters δ and η:

∂

∂δ
l(δ, η) =

r

δ + 1
− (η + 1)

r∑
i=1

ti
1 + δti

− η(n− r) tr
1 + δtr

= 0, (17)

∂

∂η
l(δ, η) =

r

η
+

r∑
i=1

ln(1− ti)−
r∑
i=1

ln(1 + δti) + (n− r)
{
ln(1− tr)− ln(1 + δtr)

}
= 0.

(18)

Hence

δ =

(
1

r

r∑
i=1

ti
1 + δti

+

∑r
i=1

ti
1+δti

+ (n− r) tr
1+δtr∑r

i=1 ln(
1+δti
1−ti ) + (n− r) ln( 1+δtr1−tr )

)−1
− 1, (19)

and

η =
r
δ+1 −

∑r
i=1

ti
1+δti∑r

i=1
ti

1+δti
+ (n− r) tr

1+δtr

. (20)

We do not have the explicit solutions for MLEs and optimal values of δ and η are
not obtained by the last two non-linear equations. The Newton-Raphson algorithm
is appropriate for obtaining the kinds of maximum likelihood (ML) estimates.

3.2 Goodness-of-fit test for NPF
Consider the case of right censoring, based on the r smallest order statistics
t1 < t2 < . . . < tr, that are observed from a sample of size n, and we want
to test whether the underlying distribution is NPF or not. Indeed, this test is
equivalent to testing that the observations u1:n, u2:n, . . . , ur:n where ui:n = F (ti)
come from the standard uniform disribution. Therefore to test H0 : the sample
comes from a population with distribution F (t; δ, η), by the probability integral
transformation, it is enough to use the uniformity test. Goodness of fit tests based
on empirical distribution functions (EDF) with Type-II censored samples for para-
metric distributions have been investigated by [19] and [20]. To apply these tests,
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we must first estimate the parameters. Then some statistics are computed for each
sample. The first statistic is the modified Kolmogorov-Smirnov statistic

Dr,n = sup
u≤ur:n

|Fn(u)− u|. (21)

Also, the modified Cramér-von Mises type statistics is given by

∗W 2
r,n =

1

12n
+

r∑
i=1

(
ui:n −

2i− 1

2n

)2
. (22)

Based on Michael and Schucany’s [21] method, we can use Anderson-Darling (AD)
test for the NPF distribution. First, we use the ML method for estimating the
parameters of the distribution with censored data. Second, we apply the following
transformation

Zi:n = Ui:n

[
Beta(r, n− r + 1;Ur:n)

]1/r
Ur:n

, i = 1, . . . , r, (23)

where Beta(r, n− r + 1;Ur:n) is the cumulative distribution function of Ur:n and
Z1:n, Z2:n, . . ., Zr:n are distributed as order statistics from a complete sample of
size r, from the standard uniform distribution. Then, the modified AD statistics
to Type-II right censored data is computed by

ADr,n = −r − 1

r

r∑
i=1

[
(2i− 1) lnZi:n + (2r + 1− 2i) ln(1− Zi:n)

]
, (24)

and is compared with the percentage points given in Stephens [22] for the complete
sample case.

4. Architecture of our proposed machine learning model

for survival analysis
The stacking method, often referred to as stacked generalization [23, 24], is an
ensemble learning technique that combines multiple predictive models to improve
overall performance. In this approach, several base models are trained on the same
dataset, and their predictions are then used as input features for a higher-level
model, known as a meta-learner. This meta-learner learns to weigh the predic-
tions from the base models, effectively capturing their strengths and compensating
for their weaknesses. By leveraging the diversity of the base models, stacking can
enhance predictive accuracy and robustness, particularly in complex tasks where
individual models may struggle. The key advantage of stacking lies in its ability
to integrate various algorithms and approaches, leading to more reliable and gen-
eralized predictions. In this study, we employed a stacking model to predict the
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values of the Survival, HRF, CHRF, RHRF, Mills Ratio, Odd, MIT, MRL, VIT,
and VRL functions. Our proposed stacking model consists of five base models
which are described as follows:

• A radial basis function neural network [25] is a type of artificial neural net-
work that uses radial basis functions as activation functions. It consists of
three layers: an input layer, a hidden layer with RBF neurons, and an out-
put layer. The hidden layer neurons compute the distance between the input
vector and a set of prototype vectors (centers), applying a Gaussian function
to produce outputs sensitive to the input’s proximity to these centers. The
Gaussian function is defined as follows:

f(x) = a · e−
(x−b)2

2c2 , (25)

where a represents the curve’s height, b is the center, and c controls the
width. This structure allows radial basis function neural networks to effec-
tively model complex, nonlinear relationships in data, making them useful for
tasks such as function approximation. The training process involves deter-
mining the optimal positions of the centers, height, and width, and adjusting
the weights in the output layer, often leading to fast convergence and good
generalization capabilities. This base model has 10 neurons in the hidden
layer.

• The other base model is a MLP structure with feed-forward and backpropa-
gation. MLP networks, composed of input, hidden, and output layers, stand
out as one of the most favored artificial neural network models due to their
remarkable learning capabilities [26]. Every layer within MLP is directly
connected to the subsequent layer. The Levenberg-Marquardt training algo-
rithm, renowned for its high learning capability [27–29], was favored. The
sigmoid function is selected for the hidden layer as the activation function,
while the Purelin function is chosen for the output layer. These activation
functions are defined as follows:

f(x) =
1

1 + exp (−x)
, (26)

Purelin(x) = x. (27)

This base model has 8 neurons in the hidden layer.

• Support Vector Machine (SVM) [30, 31] for function approximation, often
referred to as SVR, is a powerful technique that aims to find a function that
closely fits a set of data points while maintaining a balance between com-
plexity and accuracy. Instead of merely fitting a line or curve through the
data, SVR identifies a hyperplane in a high-dimensional space that best rep-
resents the underlying relationship between input features and continuous
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output values. It introduces a margin of tolerance, defined by a parame-
ter ε, within which errors are not penalized, allowing for some flexibility
in the model. The focus is primarily on support vectors—data points that
lie outside this margin—because they are crucial in shaping the regression
function. By utilizing kernel functions, SVR can efficiently model complex,
non-linear relationships, making it suitable for various real-world applica-
tions where precise function approximation is required. The kernel function
employed in our proposed SVR model is Gaussian, and the optimal values for
the parameters Box constraint, ε, and kernel scale were determined through
cross-validation.

• Random forest [32] is an ensemble learning method that constructs multiple
decision trees during training and outputs the average prediction for regres-
sion tasks or the majority vote for classification. For function approximation,
it operates by aggregating the predictions from a diverse set of trees, each
built on a random subset of the training data and features. This randomness
helps to reduce overfitting and increase generalization by capturing various
patterns in the data. The final prediction is typically more robust and ac-
curate than that of individual trees, as it mitigates the impact of noise and
variance inherent in the training data. Random forest is particularly effective
for complex, non-linear relationships in high-dimensional spaces, making it
a popular choice for various regression tasks. The proposed random forest
model consists of 100 trees.

• Gradient boosting regression trees [7] is an ensemble learning technique that
builds a predictive model by combining multiple weak learners, typically
decision trees, in a sequential manner. The core idea is to iteratively fit new
trees to the residual errors made by the existing ensemble. Initially, a simple
model is trained on the data, and subsequent trees are constructed to correct
the predictions by minimizing the loss function, often using gradient descent.
Each new tree focuses on the errors of the previous trees, effectively refining
the overall model. This process continues until a specified number of trees
are created or no significant improvement can be made.

For each base model, the parameters lifetime of electronic devices (t), scale (δ),
and shape (η) have been designated as input values. At the output layer, the base
model predicts the value of the survival, HRF, CHRF, RHRF, Mills ratio, Odd,
MIT, MRL, VIT, and VRL functions. The fundamental arrangement illustration
of base models are denoted in Figures 1 and 2.

Figure 3 presents our proposed stacking model, in which the meta-model is a
radial basis function neural network due to its effectiveness in regression tasks.
In our experimental studies, we implemented cross-validation on the base models
used in the stacking process to enhance efficiency.
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Figure 1: The fundamental arrangement of (a) a MLP, and (b) a radial basis
function neural network where x1, x2, ..., xN are input values .

Figure 2: The fundamental arrangement of (a) a random forest, and (b) Gradient
boosting regression trees.
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Figure 3: Our proposed stacking model consists of five base models where the
meta-model is a radial basis function neural network.

4.1 Effectiveness of the stacking model
Following the design of the stacking model, the subsequent step involves conducting
a thorough analysis of learning and training performance. When the training
phases of the learning models are not completed optimally, the prediction error
rates will be high, rendering the predictions unreliable. Therefore, it’s crucial to
ensure that the training stage of the model is effectively executed before deriving
predictive values from the model.

To assess the learning reliability of the developed stacking model, standard
functionality parameters, such as Mean Squared Error (MSE) and correlation co-
efficient (R), were calculated, followed by a comprehensive analysis of the obtained
results. The mathematical expressions used in evaluating the efficiency parameters
are provided below.

MSE =
1

N

i=N∑
i=1

(Xtarg(i) −Xpred(i))
2, (28)

R =

√√√√1−
i=N∑
i=1

(Xtarg(i) −Xpred(i))
2{
i=N∑
i=1

(Xtarg(i))
2}−1. (29)

5. A real data set analysis
In this section, our objective is to juxtapose the results derived from the MLE
technique with those produced by our proposed stacking model. The dataset in
question has been meticulously scrutinized by [1]. They explored the longevity
(measured in days) of 30 electronic devices, with the dataset comprising values
such as 0.020, 0.029, 0.044, 0.057, 0.034, 0.096, 0.139, 0.156, 0.106, 0.164, 0.177,
0.250, 0.326, 0.167, 0.607, 0.672, 0.650, 0.406, 0.736, 0.676, 0.817, 0.838, 0.910,
0.931, 0.946, 0.953, 0.961, 0.981, 0.982, and 0.990. Within this paper, we utilize
a subset of the data above, specifically 0.020, 0.029, 0.044, 0.057, 0.034, 0.096,
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0.139, 0.156, 0.106, 0.164, 0.177, 0.250, 0.326, 0.167, 0.607, 0.672, 0.650, 0.406,
0.736, 0.676, 0.817, 0.838.

To assess whether these lifespans follow an NPF distribution, we calculated
the EDF statistics as follows: Dr,n = 0.0978, ∗Wr,n = 0.0321, and ADr,n = 0.349.
Since the value of ADr,n does not exceed the critical point of 0.025 as per Stephens
[22], we can conclude that the censored data conforms to an NPF distribution. Our
conclusion is further supported by consulting Table 1.0 in [22] and computing the
modified versions of Dr,n and ∗Wr,n, which yield the same result.

We note that the asymptotic distribution of the MLE of θ = (δ, η) isN(θ, [I(θ)]
−1

)

where I(θ) = −E[H(θ)] and [I(θ)]
−1 is given by

[I(θ)]−1 =
1

r

[
η2(η + 1)2 −η(η + 1)(η + 2)(δ + 1)

−η(η + 1)(η + 2)(δ + 1) (η+1)2(η+2)(δ+1)2

η

]
. (30)

Here, H(θ) is the Hessian matrix that is constructed of second derivatives of the log
likelihood with respect to the parameters (see [33]). Now, based on the asymptotic
normality of estimators, we find the following two-sided 95% confidence intervals
for δ and η as follows:

δ ∈
(
δ̂e−

z0.975
δ̂

√
1
22

(η̂+1)2(η̂+2)(δ̂+1)2

η̂ , δ̂e
z0.975
δ̂

√
1
22

(η̂+1)2(η̂+2)(δ̂+1)2

η̂

)
, (31)

and

η ∈ (η̂e−
z0.975
η̂

√
1
22 η̂

2(η̂+1)2 , η̂e
z0.975
η̂

√
1
22 η̂

2(η̂+1)2), (32)

where z0.975 is the 97.5th percentile of the standard normal distribution and hence
δ ∈ (1.5548, 42.7775) and η ∈ (0.1896, 0.5765).

Table 1 presents the mean squared error of our proposed stacking model com-
pared to the MLP model proposed in [15] for approximating the specified functions.
It is evident that the MSE of our proposed stacking model consistently outper-
forms that of the MLP across all functions. Correlation coefficient (R) for both
models for approximating the specified functions equals one, making direct com-
parison unfeasible.
Tables 2 to 11 showcase the patterns of various functions related to the life-

time of 22 electronic devices, including the hazard rate (HRF), RHRF, CHRF,
Mills ratio, odd function, survival function (SF), mean residual life (MRL), mean
inactivity time (MIT), variance residual life (VRL), and variance inactivity time
(VIT). These functions were derived through numerical estimation using the max-
imum likelihood method and predictions made by the stacking model. The results
obtained through numerical methods align closely with those predicted by the
stacking model, highlighting the effectiveness of stacking predictions in the analy-
sis and assessment of reliability metrics within survival studies.
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Table 1: Comparison of the MSE between our proposed stacking model and the
MLP model presented in [15].

Stacking MLP
Mills Ratio 3.66E-11 2.83E-08
Cumulative Hazard Rate Function (CHRF) 1.56E-08 1.92E-07
Hazard Rate Function (HRF) 1.51E-08 8.22E-08
Odd Function 6.09E-07 2.20E-06
Survival Function 2.49E-09 8.64E-09
Reversed Hazard Rate Function (RHRF) 0.048285 0.059294
Mean Residual Life (MRL) Function 9.59E-11 1.89E-09
Mean Inactivity Time (MIT) Function 4.01E-12 9.59E-09
Variance Inactivity Time (VIT) Function 6.28E-14 3.63E-08
Variance Residual Life (VRL) Function 2.96E-12 7.10E-11

Table 2: Predicted values of hazard rate function.
Observation δ̂ η̂ Hazard rate function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 2.6554 2.6555 -0.0002 -4.59E-06
0.029 2.5210 2.5209 0.0025 6.34E-05
0.034 2.4531 2.4532 -0.0047 -1.16E-04
0.044 2.3300 2.3300 0.0022 5.22E-05
0.057 2.1912 2.1911 0.0028 6.09E-05
0.096 1.8779 1.8780 -0.0012 -2.24E-05
0.106 1.8159 1.8158 0.0033 6.07E-05
0.139 1.6477 1.6476 0.0019 3.21E-05
0.156 1.5783 1.5783 -0.0016 -2.52E-05
0.164 1.5489 1.5490 -0.0029 -4.44E-05
0.167 1.5384 1.5384 -0.0033 -5.06E-05
0.177 1.5051 1.5052 -0.0046 -6.92E-05
0.25 1.3280 1.3281 -0.0078 -1.03E-04
0.326 1.2274 1.2271 0.0258 3.17E-04
0.406 1.1820 1.1821 -0.0091 -1.08E-04
0.607 1.2943 1.2947 -0.0258 -3.34E-04
0.65 1.3725 1.3723 0.0117 1.60E-04
0.672 1.4240 1.4239 0.0073 1.04E-04
0.676 1.4343 1.4342 0.0078 1.12E-04
0.736 1.6373 1.6373 -0.0009 -1.50E-05
0.817 2.1584 2.1585 -0.0042 -9.02E-05
0.838 2.3849 2.3849 0.0010 2.39E-05
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Table 3: Predicted values of reversed hazard rate function.
Observation δ̂ η̂ RHRF

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 45.5745 45.5745 0.0000 0.00E+00
0.029 30.3027 30.3027 0.0000 0.00E+00
0.034 25.3567 25.3567 0.0000 -1.07E-14
0.044 18.9009 18.9009 0.0000 0.00E+00
0.057 13.9789 13.9789 0.0000 -7.11E-15
0.096 7.4597 7.4454 0.1918 1.43E-02
0.106 6.6015 6.6276 -0.3946 -2.61E-02
0.139 4.7093 4.4381 5.7574 2.71E-01
0.156 4.0742 4.4789 -9.9332 -4.05E-01
0.164 3.8259 3.9984 -4.5082 -1.72E-01
0.167 3.7397 3.7825 -1.1437 -4.28E-02
0.177 3.4760 3.0476 12.3250 4.28E-01
0.25 2.2580 1.5328 32.1187 7.25E-01
0.326 1.6380 1.6890 -3.1183 -5.11E-02
0.406 1.2769 1.4664 -14.8393 -1.89E-01
0.607 0.8892 0.9742 -9.5537 -8.50E-02
0.65 0.8577 0.9333 -8.8160 -7.56E-02
0.672 0.8469 0.9190 -8.5219 -7.22E-02
0.676 0.8453 0.9123 -7.9282 -6.70E-02
0.736 0.8372 0.9043 -8.0135 -6.71E-02
0.817 0.8856 0.9714 -9.6884 -8.58E-02
0.838 0.9155 1.0154 -10.9115 -9.99E-02

Table 4: Predicted values of cumulative hazard rate function.
Observation δ̂ η̂ CHRF

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.0566 0.0567 -0.1939 -1.10E-04
0.029 0.0799 0.0799 0.0542 4.33E-05
0.034 0.0923 0.0924 -0.0961 -8.87E-05
0.044 0.1162 0.1160 0.1828 2.13E-04
0.057 0.1456 0.1455 0.0890 1.30E-04
0.096 0.2245 0.2247 -0.0703 -1.58E-04
0.106 0.2430 0.2432 -0.0655 -1.59E-04
0.139 0.3000 0.3001 -0.0270 -8.10E-05
0.156 0.3274 0.3274 0.0169 5.54E-05
0.164 0.3399 0.3399 0.0139 4.73E-05
0.167 0.3446 0.3445 0.0162 5.57E-05
0.177 0.3598 0.3597 0.0262 9.42E-05
0.25 0.4626 0.4626 -0.0079 -3.67E-05
0.326 0.5593 0.5592 0.0131 7.30E-05
0.406 0.6553 0.6554 -0.0196 -1.28E-04
0.607 0.8984 0.8983 0.0117 1.05E-04
0.65 0.9556 0.9555 0.0164 1.56E-04
0.672 0.9864 0.9863 0.0093 9.20E-05
0.676 0.9921 0.9924 -0.0335 -3.32E-04
0.736 1.0837 1.0837 0.0000 -1.51E-07
0.817 1.2347 1.2346 0.0064 7.85E-05
0.838 1.2823 1.2823 -0.0038 -4.85E-05
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Table 5: Predicted values of Mills ratio.
Observation δ̂ η̂ Mills ratio

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.3766 0.3766 -0.0016 -6.02E-06
0.029 0.3967 0.3967 0.0051 2.03E-05
0.034 0.4076 0.4077 -0.0029 -1.19E-05
0.044 0.4292 0.4292 -0.0007 -3.05E-06
0.057 0.4564 0.4564 -0.0004 -1.98E-06
0.096 0.5325 0.5325 0.0010 5.56E-06
0.106 0.5507 0.5507 0.0007 3.66E-06
0.139 0.6069 0.6069 -0.0006 -3.59E-06
0.156 0.6336 0.6336 -0.0008 -4.76E-06
0.164 0.6456 0.6456 -0.0005 -3.00E-06
0.167 0.6500 0.6500 -0.0004 -2.52E-06
0.177 0.6644 0.6644 -0.0001 -5.47E-07
0.25 0.7530 0.7530 0.0001 5.81E-07
0.326 0.8147 0.8147 -0.0001 -7.69E-07
0.406 0.8460 0.8460 0.0002 1.31E-06
0.607 0.7726 0.7726 -0.0008 -6.31E-06
0.65 0.7286 0.7286 0.0006 4.46E-06
0.672 0.7023 0.7023 0.0007 4.69E-06
0.676 0.6972 0.6972 0.0006 4.18E-06
0.736 0.6108 0.6108 0.0001 5.02E-07
0.817 0.4633 0.4633 -0.0002 -7.87E-07
0.838 0.4193 0.4193 0.0000 8.96E-09

Table 6: Predicted values of odd function.
Observation δ̂ η̂ Odd function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.0583 0.0586 -0.5052 -2.94E-04
0.029 0.0832 0.0830 0.1858 1.55E-04
0.034 0.0967 0.0965 0.2451 2.37E-04
0.044 0.1233 0.1231 0.1660 2.05E-04
0.057 0.1567 0.1568 -0.0141 -2.21E-05
0.096 0.2517 0.2523 -0.2165 -5.45E-04
0.106 0.2751 0.2756 -0.1808 -4.97E-04
0.139 0.3499 0.3498 0.0285 9.97E-05
0.156 0.3874 0.3870 0.1007 3.90E-04
0.164 0.4048 0.4044 0.1097 4.44E-04
0.167 0.4114 0.4109 0.1083 4.46E-04
0.177 0.4330 0.4326 0.0846 3.66E-04
0.25 0.5881 0.5904 -0.3811 -2.24E-03
0.326 0.7494 0.7474 0.2572 1.93E-03
0.406 0.9257 0.9265 -0.0848 -7.85E-04
0.607 1.4556 1.4549 0.0462 6.72E-04
0.65 1.6003 1.6015 -0.0784 -1.26E-03
0.672 1.6815 1.6814 0.0012 2.02E-05
0.676 1.6968 1.6961 0.0439 7.44E-04
0.736 1.9557 1.9557 -0.0035 -6.88E-05
0.817 2.4373 2.4373 0.0002 5.27E-06
0.838 2.6049 2.6049 -0.0001 -1.70E-06
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Table 7: Predicted values of survival function.
Observation δ̂ η̂ Survival function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.9449 0.9450 -0.0010 -9.82E-06
0.029 0.9232 0.9231 0.0056 5.13E-05
0.034 0.9118 0.9118 -0.0024 -2.21E-05
0.044 0.8903 0.8903 -0.0004 -3.24E-06
0.057 0.8645 0.8646 -0.0073 -6.28E-05
0.096 0.7989 0.7989 0.0013 1.01E-05
0.106 0.7843 0.7842 0.0093 7.33E-05
0.139 0.7408 0.7407 0.0098 7.25E-05
0.156 0.7208 0.7208 -0.0002 -1.67E-06
0.164 0.7118 0.7119 -0.0044 -3.12E-05
0.167 0.7085 0.7086 -0.0044 -3.11E-05
0.177 0.6978 0.6979 -0.0106 -7.40E-05
0.25 0.6297 0.6297 -0.0027 -1.67E-05
0.326 0.5716 0.5716 0.0061 3.49E-05
0.406 0.5193 0.5192 0.0104 5.42E-05
0.607 0.4072 0.4074 -0.0343 -1.40E-04
0.65 0.3846 0.3846 0.0005 2.11E-06
0.672 0.3729 0.3729 0.0120 4.46E-05
0.676 0.3708 0.3708 0.0150 5.56E-05
0.736 0.3383 0.3383 -0.0003 -1.07E-06
0.817 0.2909 0.2909 0.0038 1.12E-05
0.838 0.2774 0.2774 -0.0059 -1.65E-05

Table 8: Predicted values of MRL function.
Observation δ̂ η̂ MRL function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.4965 0.4965 -0.0018 -9.15E-06
0.029 0.4991 0.4991 -0.0003 -1.70E-06
0.034 0.5003 0.5003 -0.0007 -3.34E-06
0.044 0.5023 0.5023 0.0016 8.10E-06
0.057 0.5041 0.5041 0.0018 8.93E-06
0.096 0.5049 0.5049 0.0001 6.12E-07
0.106 0.5042 0.5042 -0.0001 -2.65E-07
0.139 0.4999 0.4999 -0.0001 -4.12E-07
0.156 0.4965 0.4965 -0.0020 -1.00E-05
0.164 0.4947 0.4947 0.0002 1.21E-06
0.167 0.4940 0.4940 0.0004 2.14E-06
0.177 0.4915 0.4915 0.0009 4.32E-06
0.25 0.4679 0.4679 0.0003 1.51E-06
0.326 0.4357 0.4357 -0.0021 -9.12E-06
0.406 0.3957 0.3956 0.0035 1.40E-05
0.607 0.2766 0.2766 -0.0060 -1.67E-05
0.65 0.2486 0.2486 -0.0050 -1.26E-05
0.672 0.2340 0.2340 0.0021 4.94E-06
0.676 0.2314 0.2313 0.0107 2.47E-05
0.736 0.1907 0.1907 0.0001 1.02E-07
0.817 0.1340 0.1340 -0.0122 -1.63E-05
0.838 0.1190 0.1190 0.0094 1.11E-05
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Table 9: Predicted values of MIT function.
Observation δ̂ η̂ MIT function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.0103 0.0103 0.0110 1.14E-06
0.029 0.0151 0.0151 0.0085 1.28E-06
0.034 0.0179 0.0179 0.0113 2.02E-06
0.044 0.0234 0.0234 -0.0206 -4.81E-06
0.057 0.0307 0.0307 -0.0126 -3.87E-06
0.096 0.0536 0.0536 0.0059 3.17E-06
0.106 0.0596 0.0596 0.0062 3.68E-06
0.139 0.0799 0.0799 0.0020 1.59E-06
0.156 0.0906 0.0906 0.0000 -2.79E-08
0.164 0.0957 0.0957 -0.0015 -1.47E-06
0.167 0.0976 0.0976 -0.0018 -1.72E-06
0.177 0.1039 0.1039 -0.0025 -2.56E-06
0.25 0.1513 0.1513 0.0012 1.77E-06
0.326 0.2018 0.2018 -0.0001 -2.57E-07
0.406 0.2556 0.2556 0.0001 1.74E-07
0.607 0.3898 0.3898 -0.0002 -6.76E-07
0.65 0.4176 0.4176 0.0003 1.08E-06
0.672 0.4317 0.4317 0.0000 2.04E-08
0.676 0.4342 0.4342 -0.0001 -5.86E-07
0.736 0.4714 0.4714 0.0000 -1.69E-09
0.817 0.5181 0.5181 0.0001 2.83E-07
0.838 0.5292 0.5292 0.0000 -2.32E-07

Table 10: Predicted values of VRL function.
Observation δ̂ η̂ VRL function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.1247 0.1247 0.0005 6.83E-07
0.029 0.1218 0.1218 -0.0011 -1.39E-06
0.034 0.1202 0.1202 -0.0010 -1.16E-06
0.044 0.1171 0.1171 0.0018 2.06E-06
0.057 0.1130 0.1130 0.0018 2.08E-06
0.096 0.1014 0.1014 -0.0017 -1.75E-06
0.106 0.0985 0.0985 -0.0032 -3.15E-06
0.139 0.0895 0.0895 -0.0002 -1.46E-07
0.156 0.0851 0.0851 -0.0033 -2.79E-06
0.164 0.0830 0.0830 0.0018 1.48E-06
0.167 0.0823 0.0823 0.0036 2.93E-06
0.177 0.0798 0.0798 0.0040 3.17E-06
0.25 0.0634 0.0634 -0.0024 -1.52E-06
0.326 0.0490 0.0490 -0.0030 -1.49E-06
0.406 0.0365 0.0365 0.0034 1.24E-06
0.607 0.0145 0.0145 -0.0083 -1.21E-06
0.65 0.0113 0.0113 -0.0054 -6.14E-07
0.672 0.0098 0.0098 0.0085 8.33E-07
0.676 0.0096 0.0095 0.0154 1.47E-06
0.736 0.0062 0.0062 -0.0084 -5.21E-07
0.817 0.0029 0.0029 0.0075 2.15E-07
0.838 0.0022 0.0022 -0.0183 -4.09E-07
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Table 11: Predicted values of VIT function.
Observation δ̂ η̂ VIT function

t 8.1555 0.3306 MLE Stacking model Deviation Difference
0.02 0.0000 0.0000 -1.4331 -4.77E-07
0.029 0.0001 0.0001 0.1072 7.50E-08
0.034 0.0001 0.0001 0.1926 1.85E-07
0.044 0.0002 0.0002 0.1545 2.49E-07
0.057 0.0003 0.0003 0.0279 7.52E-08
0.096 0.0008 0.0008 -0.0410 -3.12E-07
0.106 0.0009 0.0009 -0.0332 -3.08E-07
0.139 0.0016 0.0016 -0.0073 -1.16E-07
0.156 0.0020 0.0020 0.0150 2.98E-07
0.164 0.0022 0.0022 0.0042 9.20E-08
0.167 0.0023 0.0023 0.0051 1.15E-07
0.177 0.0026 0.0026 0.0072 1.86E-07
0.25 0.0051 0.0051 -0.0001 -2.62E-09
0.326 0.0086 0.0086 0.0005 4.18E-08
0.406 0.0134 0.0134 -0.0006 -8.54E-08
0.607 0.0306 0.0306 0.0006 1.78E-07
0.65 0.0355 0.0355 -0.0020 -7.10E-07
0.672 0.0382 0.0382 0.0009 3.42E-07
0.676 0.0387 0.0387 0.0004 1.69E-07
0.736 0.0469 0.0469 0.0000 4.97E-09
0.817 0.0602 0.0602 0.0001 5.73E-08
0.838 0.0642 0.0642 -0.0001 -5.57E-08

In Figures 4 and 5, each data point used to construct the stacking model is
associated with 22 distinct output values. Upon inspection of Figures 4 and 5, it
is clear that the output values generated by the stacking model precisely match
the target values for each data point. The alignment of the target values with
the predicted values on the graph line indicates the exceptional accuracy of the
results produced by the developed Stacking model. This seamless correspondence
between the target and predicted values underscores the stacking model’s capac-
ity to reliably forecast the parameters crucial for assessing the dependability of
electrical components.

In Figures 6 and 7, the x-axis displays the target data, while the y-axis show-
cases the output values generated by the stacking model. This visual representa-
tion aims to provide a comprehensive assessment of the model’s predictive precision
by analyzing the closeness of data points to the line of zero error. Upon scruti-
nizing the data points depicted in Figures 6 and 7, it is evident that the majority
align precisely with the zero error line. Notably, these data points consistently fall
within a ±10% error margin, emphasizing the exceptional accuracy and depend-
ability of the results produced by the stacking model. To verify the precision of
the forecasts generated by the stacking model, it is crucial to assess the relative
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Figure 4: Output values corresponding to data employed in training the stacking
model (1).
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Figure 5: Output values corresponding to data employed in training the stacking
model (2).
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Figure 6: The target and predicted values (1).
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Figure 7: The target and predicted values (2).
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Figure 8: The calculated deviation values for each data point (1).
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Figure 9: The calculated deviation values for each data point (2).
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variances between the outputs produced by the stacking model and the real data.
This involves calculating the proportional differences between the expected values
and the forecasted values for each data point using the prescribed formula [15]:

Deviation(%) =

{
Xtarg −Xpred

Xtarg

}
× 100. (33)

The deviation values for individual data points are visually presented in Fig-
ures 8 and 9. Upon examination of these values, it is evident that they cluster
closely around the zero deviation line. Additionally, the graph illustrating the
mean deviation exhibits a comparable trend to that of the zero deviation line.
The findings from the analysis of these deviation values confirm that the con-
structed Stacking can effectively predict ten distinct parameters used to assess
the dependability of electrical components, resulting in minimal and satisfactory
deviations.

6. Conclusion
This research compared the performance of MLE and a stacking ensemble model
in estimating a new power function under Type-II right censoring. Our findings
indicate that the stacking model, which integrates predictions from five diverse
base models, demonstrates superior accuracy in predicting key reliability measures,
such as hazard rate and mean residual life, when dealing with censored data. This
suggests that stacking represents a robust and versatile approach for reliability
analysis, particularly in handling complex relationships and non-linear patterns
within data, potentially outperforming traditional MLE methods. The results
highlight the potential of ensemble learning for enhancing reliability assessments
in the presence of censored data.

Future research will focus on expanding the scope and applicability of the
stacking model. We plan to incorporate a wider range of base models, particu-
larly those designed for handling censored data, within the stacking framework.
Furthermore, we aim to refine the model’s performance through advanced hyper-
parameter optimization techniques for both the base models and the meta-learner.
To validate its practical relevance, the stacking model will be applied to real-world
datasets across diverse domains involving censored data. We will also conduct sen-
sitivity analysis to understand the impact of different censoring schemes and data
characteristics on the model’s performance. Finally, the stacking approach will be
compared with other established ensemble methods, such as bagging and boosting,
to assess its relative effectiveness for estimating reliability measures under Type-II
right censoring. Through these future directions, we aim to contribute to a more
comprehensive understanding of stacking ensembles in survival analysis, ultimately
fostering more accurate and reliable predictions in practical applications involving
censored data.
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