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Abstract

Drug repurposing presents a cost-effective and time-efficient alternative
to traditional drug discovery by identifying new therapeutic uses for exist-
ing medications. As biomedical data grows in scale and complexity, there
is an increasing demand for predictive models that balance accuracy, inter-
pretability, and computational efficiency. In this study, we systematically
evaluate hybrid models that combine established matrix factorization tech-
niques with machine learning regressors, with an emphasis on interpretable
and lightweight models such as the Decision Tree Regressor. Using the widely
adopted Fdataset, comprising 1,933 known associations between 593 drugs
and 313 diseases, we demonstrate that several of these hybrid approaches
achieve predictive performance comparable to or surpassing that of complex
models like WNMFDDA, while significantly reducing memory usage and
training time. Notably, our framework relies solely on the drug—disease asso-
ciation matrix, removing the dependency on auxiliary similarity data, which
is often unavailable in real-world applications. Among the tested models,
the NMF DecisionTreeRegressor offers the highest accuracy, making it ideal
for accuracy-critical scenarios, while the Ridge model stands out for its ef-
ficiency and suitability for resource-constrained environments. To enhance
transparency, we further apply LIME (Local Interpretable Model-Agnostic
Explanations) to provide interpretable insights into model predictions. These
findings highlight a practical and scalable framework for drug repurposing,
particularly suited for environments with limited computational resources.
Our approach supports the development of accessible, data-driven predictive
tools that accelerate the transition from computational modeling to clinical
application.
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1. Introduction

Drug repurposing, also referred to as drug repositioning, has emerged as an inno-
vative and cost-effective strategy in pharmaceutical research, providing a practical
alternative to traditional drug discovery [1]. Instead of developing new drugs en-
tirely from scratch, this approach focuses on identifying new therapeutic uses for
existing medications that have already undergone regulatory approval. Repurpos-
ing enables researchers to leverage prior safety and efficacy data, thereby accel-
erating development timelines and reducing associated costs [2, 3]. Additionally,
successful examples such as Minoxidil and Sildenafil demonstrate how repurposed
drugs can bring significant clinical and commercial impact [2, 4, 5].

With the growing availability of large-scale biomedical datasets, computational
methods have become increasingly important for accelerating drug repurposing.
In particular, machine learning techniques have demonstrated strong potential
in predicting drug-disease associations by uncovering hidden patterns in complex
biological data [6, 7]. Furthermore, numerical linear algebra methods have con-
tributed to improving both the speed and accuracy of these predictions by enabling
efficient low-rank approximations and matrix decompositions.

In this study, we focus on optimizing drug-disease association prediction us-
ing a combination of machine learning and numerical linear algebra-based tech-
niques. To evaluate model performance, we employed a well-established bench-
mark dataset known as Fdataset, originally compiled by Gottlieb et al. [8], which
includes 1933 known associations between 593 drugs and 313 diseases. This bi-
nary drug-disease adjacency matrix has been widely adopted for evaluating pre-
dictive models in drug repurposing research. Additionally, prior work such as
WNMFDDA [9] has utilized auxiliary drug-drug and disease-disease similarity
matrices computed from chemical structure and semantic clinical text to further
guide association prediction. WNMFDDA represents a prominent state-of-the-art
model for drug-disease association, achieving an AUC of 0.939 on the Fdataset
under ten-fold cross-validation [9]. However, the model’s high computational and
memory demands, alongside the need for auxiliary similarity matrices, limit its
practicality in real-world biomedical applications.
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Our previous work [10] demonstrated that simpler models like the Decision
Tree Regressor can drastically reduce memory usage and execution time while
maintaining competitive predictive accuracy. Nonetheless, we identified accuracy
as an area for further improvement.

In this paper, we propose novel hybrid predictive methods that combine matrix
factorization techniques (e.g., PCA, NMF, Alternating Projections, SGD) with
machine learning models to achieve substantial improvements in both prediction
accuracy and runtime. These methods reduce Mean Squared Error (MSE) by
up to an order of magnitude compared to WNMFDDA, while also eliminating
the need for external similarity matrices. This simplification not only improves
computational efficiency but also broadens the applicability in clinical scenarios
where such auxiliary data may be unavailable.

In summary, this study presents a set of scalable and resource-efficient hybrid
models that advance the state of drug-disease association prediction. Extensive
benchmarking using DrugBank [11] and OMIM [12] confirms the superiority of
our methods across multiple evaluation criteria. These contributions support the
broader goal of accelerating drug repurposing workflows while reducing resource
requirements.

2. Related work

Various computational approaches have been developed to predict drug—disease as-
sociations, leveraging diverse data representations and machine learning architec-
tures. These methods aim to identify novel therapeutic opportunities by analyzing
biomedical data through different algorithmic lenses.

One of the early methods is Sparse Auto-Encoder-Based Rotation Forest-
(SAEROF) [13], which combines sparse autoencoders with Rotation Forests to
model structural and semantic patterns between drugs and diseases. Although
SAEROF improves prediction accuracy by learning richer representations, it in-
curs high computational overhead due to its deep network components. Another
approach is Drug—Disease Association using Similarity Kernel Fusion-(DDA-SKF)
[14], which integrates multiple drug and disease similarity matrices using a kernel-
based fusion strategy. It employs Laplacian Regularized Least Squares to make
predictions and demonstrates robustness in data-scarce settings. However, its per-
formance deteriorates when similarity information is incomplete or noisy.

Deep learning-based methods have also gained traction in drug-disease asso-
ciation prediction. A key example is the Densely Connected Convolutional Net-
works(DCNN) model [15], which utilizes a densely connected convolutional neural
network with attention mechanisms to uncover hidden patterns in drug-disease
relationships. Despite its ability to capture complex interactions, DCNN requires
extensive training data and involves intricate model configurations. These factors
make it challenging to implement effectively, particularly when dealing with small
or imbalanced datasets.
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Matrix factorization-based techniques offer another promising avenue. The
Similarity Constrained Matrix Factorization(SCMFDD) model [16] applies sim-
ilarity constraints to matrix factorization, projecting drugs and diseases into a
lower-dimensional space to facilitate association predictions. However, a key lim-
itation of SCMFDD is its reduced performance when encountering new or previ-
ously unseen data, which negatively affects its generalization capability.

More recent developments have focused on integrating graph-based reason-
ing and representation learning. For instance, Reinforcement Symmetric Metric
Learning and Graph Convolution Network(RSML-GCN) [17] introduces a rein-
forcement learning framework with symmetric metric learning over heterogeneous
graphs. By modeling topological patterns and feedback-driven associations, it im-
proves drug repositioning accuracy, though at the cost of increased computational
complexity. Another notable approach is Semantic Graph and Function Similarity
Representation for Drug—Disease Association Prediction(SFRLDDA) [18], which
employs semantic graphs and biological function similarity to generate enriched
feature spaces. This method improves prediction robustness, but relies on complex
feature engineering and domain-specific resources.

Collaborative Filtering and Multiple Kernel Graph Attention Network for Drug-
Disease Association Prediction(CFMKGATDDA) [19] combines collaborative fil-
tering with multi-kernel attention mechanisms on heterogeneous graphs. This hy-
brid model effectively captures multi-scale interactions, but its layered architecture
introduces significant memory and training overhead. Also, the Weighted Graph
Regularized Collaborative Non-negative Matrix Factorization for Drug-Disease As-
sociation Prediction(WNMFDDA) model [9] has emerged as a state-of-the-art ap-
proach. This method integrates non-negative matrix factorization with graph reg-
ularization to uncover potential drug-disease links. It first calculates similarity
scores based on drug chemical structures and disease characteristics, refines asso-
ciation scores using a weighted K-nearest neighbors approach, and then applies
matrix factorization and graph regularization for prediction. While WNMFDDA
demonstrates high predictive accuracy and robust mathematical foundations, it de-
mands significant computational resources, particularly in terms of memory and
processing time. Additionally, its complexity makes it less interpretable, highlight-
ing the need for alternative methods that maintain high accuracy while improving
efficiency and interpretability [9]. Table 1 provides a comprehensive summary of
techniques used for drug—disease association prediction.
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Table 1: Summary of Drug—Disease Association Prediction Techniques.

Ref. Approach Benefits Limitations

[13] SAEROF: Combines sparse autoencoders — Richer representations, improve predic-  High computational overhead
with Rotation Forest to model structural tion accuracy
and semantic patterns.

|14] DDA-SKEF: Integrates multiple similarity =~ Performs well on sparse datasets Sensitive to incomplete or noisy simi-
matrices using kernel fusion and Laplacian larity inputs
Regularized Least Squares.

[15] DCNN: Applies densely connected convo- ~ Powerful for complex drug-disease rela-  Requires large, balanced datasets and
lutional networks with attention to capture  tionships intricate configurations,Intricate con-
hidden drug-disease patterns. figurations

|16] SCMFDD: Uses similarity-constrained Effective for structured prediction Weak generalization to novel or unseen
matrix factorization to project data into data
lower dimensions.

[17] RSML-GCN: Leverages reinforcement High accuracy via topological modeling Increased computational demands
symmetric metric learning with graph con-  and feedback mechanisms
volution over heterogeneous networks.

(18] SFRLDDA: Utilizes semantic graphs and ~ Offers robustness Requires intensive feature engineering
biological function similarity to construct and expert resources
enriched feature representations.

[19] CFMKGATDDA: Integrates collabora- High prediction performance Substantial memory usage and training

tive filtering and multiple kernel graph at-

time

tention networks for multi-scale interaction
modeling.

19] WNMFDDA: Combines weighted KNN,
graph regularization, and non-negative
matrix factorization using similarity
scores.

High accuracy and mathematical ro-
bustness

Complex and resource-intensive, lim-
ited interpretability

In contrast to the above approaches, our proposed hybrid models integrate
matrix factorization techniques (such as NMF, PCA, or SGD) with lightweight
regressors like Decision Tree, yielding comparable or even superior predictive per-
formance while drastically reducing computational resources. Specifically, our
methods reduce memory consumption and cut training time compared to WN-
MFDDA. Furthermore, they eliminate the need for external drug or disease sim-
ilarity matrices, making them highly practical for clinical scenarios with limited
data availability or computational constraints.

3. Methodology

In this study, we aimed to develop a model that accurately predicts drug-disease
associations while optimizing computational efficiency, building upon our previous
work [10]. To this end, we evaluated the state-of-the-art Weighted Graph Regu-
larized Collaborative Non-negative Matrix Factorization for Drug-Disease Associ-
ation Prediction (WNMFDDA), known for its high predictive accuracy, alongside
various alternative approaches, including machine learning algorithms and numer-
ical linear algebra techniques. Our objective was to find methods that maintain
comparable accuracy but with reduced memory and processing requirements.
While WNMFDDA demonstrates strong predictive performance, it is computa-
tionally intensive due to its reliance on matrix decomposition. Hybrid models like
the NMF DecisionTreeRegressor similarly require more memory and some-
times longer execution times, but can offer superior accuracy. If accuracy is the
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primary concern, the NMF DecisionTreeRegressor is recommended. However, for
use in resource-constrained settings, simpler models such as Ridge provide a bet-
ter balance by offering fast execution and minimal memory usage with competitive
accuracy.

Figure 1 illustrates the overall methodology followed in this study.
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Figure 1: Flowchart illustrating the overall methodology followed in this study.

3.1 Foundational analysis of WNMFDDA

To gain a comprehensive understanding of the WNMFDDA method, we first exam-
ine its underlying principles. While WNMFDDA demands greater computational
time and memory than traditional NMF, its improved accuracy makes these trade-
offs justifiable. Moreover, the resource consumption remains within a comparable
range, allowing us to prioritize improved model performance over computational
efficiency.

A comparative evaluation was conducted across multiple methodologies. Among
them, the Decision Tree Regressor exhibited performance closest to the baseline
while maintaining high accuracy and reduced computational demands compared
to WNMFDDA. Additionally, it offers superior interpretability, making it partic-
ularly advantageous for interdisciplinary applications. As a result, the Decision
Tree Regressor emerged as the most effective model in this case study.

3.2 Non-negative matrix factorization (NMF)

A fundamental technique that serves as the basis for the reference method exam-
ined is Non-negative Matrix Factorization (NMF) [20]. This approach decomposes
the drug-disease association matrix V into two non-negative matrices W and H,
as follows:

VaWxH, (1)

where:
e V: Drug-disease association matrix

e W: Latent features representing drugs
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e H: Latent features representing diseases

The time complexity of Non-negative Matrix Factorization (NMF) is O(k -
mnr), where m and n are the dimensions of the input matrix, r is the target rank,
and k is the number of iterations. Each iteration involves matrix multiplications
and element-wise updates for the factor matrices W € R"™*" and H € R"™*",

The space complexity is O(mr+nr), which corresponds to the memory required
to store the two factor matrices. In our experiments, we set the rank r = 50 and
limited the number of iterations to balance computational cost and approximation
quality. This setup provides an efficient, low-rank representation while keeping
the memory footprint manageable.

3.3 Decision tree regressor

The Decision Tree Regressor [21] is a non-parametric regression model that pre-
dicts target values by learning a set of hierarchical decision rules. It recursively
partitions the data space into smaller subsets to minimize prediction errors, form-
ing a tree-like structure of decisions. This method effectively captures non-linear
relationships without requiring feature scaling or transformation, making it highly
adaptable for diverse regression tasks.

The model operates by iteratively dividing the dataset into subsets based on
feature thresholds, leading to leaf nodes containing samples with similar target
values. The quality of a split is determined by the reduction in MSE, ensuring
that each partition reduces impurity. This process continues recursively until
predefined stopping criteria, such as maximum tree depth or minimum samples
per leaf are met.

For any given input, predictions are generated by traversing the decision tree
from the root to a leaf node. The predicted value ¢ is computed as the mean of
target values in that leaf:

1 N
j = — (2l 2
] N;:ly (2)

where:
e 3: Predicted output
e y;: Actual target values in the leaf node
e N: Number of samples in the leaf node

The Decision Tree Regressor is particularly advantageous due to its ability to
model complex, non-linear relationships while maintaining interpretability. How-
ever, it is susceptible to overfitting, especially when deep trees are constructed. To
mitigate this, regularization techniques such as limiting tree depth or enforcing a
minimum number of samples per leaf are commonly employed.
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The computational complexity of training a Decision Tree Regressor is a func-
tion of the number of samples N and features d. Evaluating all potential splits
at each node requires O(d - N log N) operations due to the sorting process. If the
tree has T terminal nodes, the overall complexity increases to O(d- N log N -T), as
this operation is repeated across all tree levels. For prediction, the complexity is
proportional to the depth of the tree. In the worst case, this depth can be O(N),
leading to a prediction complexity of O(N). However, with proper regularization,
the depth can often be constrained to O(log N'), improving efficiency.

Given its capability to improve interpretability while optimizing prediction
accuracy, the Decision Tree Regressor is particularly well-suited for applications
such as drug repurposing. Its structured decision-making process provides valuable
insights into feature importance, making it a valuable tool for interdisciplinary
research and practical deployment.

To improve reproducibility, we provide a detailed description of how Non-
negative Matrix Factorization (NMF) and machine learning algorithms are in-
tegrated in our approach. Specifically, the drug-disease association matrix is first
decomposed via NMF to obtain low-dimensional latent features for drugs and dis-
eases. These latent representations are subsequently used as inputs to various
machine learning algorithms, such as Decision Tree Regressors, to predict drug-
disease associations more accurately and efficiently. This integration leverages
the dimensionality reduction capability of NMF with the predictive power of ma-
chine learning. Moreover, our methodology is generalizable across the broader
field of biomedical data analysis, particularly in tasks involving large, sparse,
and noisy matrices where interpretability and computational efficiency are crit-
ical. The proposed framework can easily be adapted to other applications such
as gene-disease association prediction, protein-protein interaction analysis, or any
matrix-based biomedical prediction problem, facilitating reproducible, scalable,
and interpretable discoveries.

3.4 Ridge regressor

Ridge Regression [22] is a linear model that addresses multicollinearity by introduc-
ing a regularization term to the ordinary least squares (OLS) objective function.
It minimizes the residual sum of squares while penalizing the magnitude of the
regression coefficients, thereby reducing model variance and preventing overfitting
[22]. The Ridge objective function is defined as:

n
: T
min {Z«w W)+ Anwu%} , (3)
i=1
where:
e x;: Feature vector for the i*" instance

e y;: Actual target value for the i*? instance
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e w: Weight vector (model parameters)
e \: Regularization strength (controls the penalty on coefficient size)

The addition of the Ly penalty term \||w||3 discourages large coefficients, leading
to a more robust model that generalizes better on unseen data. Unlike Lasso, Ridge
does not perform feature selection but instead shrinks all coefficients toward zero
uniformly.

Ridge Regression is particularly well-suited for high-dimensional problems where
the number of features may exceed the number of samples, as is common in biomed-
ical datasets. It can be efficiently solved using matrix algebra through closed-form
solutions:

w=X"X+)"'X"y. (4)

The training complexity is dominated by the matrix inversion operation, which is
O(d?) for d features. However, this can be significantly reduced through efficient
numerical solvers and is generally much lower than iterative methods used in tree-
based models. Although Ridge Regression assumes a linear relationship between
features and targets, its simplicity and low variance make it competitive for many
tasks. In our experiments, the Ridge model demonstrated excellent runtime and
memory efficiency while achieving acceptable prediction accuracy, making it ideal
for deployment in resource-constrained environments.

3.5 Local interpretable model-agnostic explanations (LIME)

Interpretability is critical in healthcare applications, where understanding the
rationale behind model predictions can improve trust, support clinical decision-
making, and aid in identifying potential biases. To improve the transparency of
our regression model, we employed Local Interpretable Model-Agnostic Explana-
tions (LIME) [23], a widely adopted method for explaining individual predictions
of black-box models.

LIME generates local surrogate models that approximate the behavior of the
original model in the vicinity of a specific instance. For our analysis, we applied
LIME to a trained model to interpret the predictions for selected test samples.
The method identifies and ranks the most influential features contributing to each
prediction.

4. Results and experiments

4.1 Dataset

To evaluate the performance of the proposed methods, we utilized a well-established
benchmark dataset known as Fdataset, originally compiled by Gottlieb et al. [8].
This dataset is widely regarded for its reliability in assessing drug-disease associa-
tion prediction techniques. It comprises 1933 confirmed associations between 593
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unique drugs and 313 distinct diseases, forming a binary drug-disease adjacency
matrix A € R"¢*"dis  where ng = 593 and ng;s = 313. In this matrix, each entry
A;;j = 1 indicates a confirmed association between drug ¢ and disease j, whereas
A;ij = 0 represents no known association.

The dataset was curated from authoritative public biomedical resources, specif-
ically DrugBank [11] and the Online Mendelian Inheritance in Man (OMIM)
database [12], both of which are considered gold standards in the field of drug
repurposing and disease gene discovery. It includes detailed molecular charac-
teristics of drugs alongside clinical and semantic information related to diseases.
To ensure data quality and consistency, duplicate entries were removed during
preprocessing. In addition to the adjacency matrix, we derived drug and dis-
ease similarity information to improve the predictive modeling. Drug similarity
was computed based on chemical structure, using 2D molecular fingerprints gen-
erated from SMILES strings. The Chemical Development Kit [24] was employed
for fingerprint generation, and the Tanimoto coefficient [25] was used to calculate
the pairwise similarity between drugs. On the other hand, disease similarity was
assessed using MimMiner [26], a tool that applies text mining techniques to clin-
ical descriptions in the OMIM database to estimate semantic relatedness between
diseases.

These three components, the binary drug-disease association matrix, the drug
similarity matrix, and the disease similarity matrix served as the foundation for our
predictive model. Specifically, they were integrated as inputs to the WNMFDDA
framework, which was designed to infer potential novel associations between drugs
and diseases.

4.1.1 Implementation and preprocessing details

To ensure reproducibility and fair evaluation, all experiments were implemented
in Python using the scikit-learn machine learning library. The dataset was pre-
processed to remove duplicate entries and ensure consistent formatting across ma-
trices. The binary drug-disease association matrix was used as the primary input
for all models. For hybrid methods, input matrices were first reduced using ma-
trix factorization techniques (e.g., PCA, NMF), and the resulting low-dimensional
representations were used to train Decision Tree regressors.

For machine learning and hybrid models, five-fold cross-validation was applied.
The full dataset was randomly partitioned into five equal subsets, with each subset
used once as the test set while the remaining four were used for training. This pro-
cess was repeated five times, and the average performance metrics were reported.
This approach provided a robust and unbiased estimate of model generalization
performance.

In contrast, classical matrix factorization methods that are not trained in a
supervised fashion (e.g., SVD, NMF, PCA) were evaluated using full-matrix re-
construction. Since these models do not involve learning from training data, we
computed the MSE between the reconstructed and original matrices over the entire
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dataset.

Hyperparameters were selected based on preliminary experimentation and stan-
dard values reported in related works. For Decision Tree regressors, we used a
maximum tree depth of 10 and a minimum of 5 samples per leaf to mitigate over-
fitting. For matrix factorization methods, the number of latent components (rank)
was fixed at 50, which balanced model expressiveness and computational efficiency.
In the Ridge Regression baseline, the regularization parameter o was set to 0.1.

4.2 Model comparison and evaluation

To assess and compare model performance, we utilized the MSE metric, which
quantifies the average squared difference between actual and predicted values. A
lower MSE value signifies greater predictive accuracy. The MSE is calculated using

the following formula:

MSE = %Z(yz —4;)%, ()

where:
e y;: Actual values
e 7;: Predicted values
e n: Number of data points

To establish a benchmark, we selected the WNMFDDA method as the reference
model and compared the performance of alternative approaches against it. While
WNMFDDA offers superior accuracy, it is computationally demanding in terms of
memory usage and processing time. Alternative models, including matrix factor-
ization based techniques and certain machine learning algorithms, demonstrated
comparable performance to WNMFDDA while requiring significantly fewer com-
putational resources.

Our analysis revealed that some alternative models could approximate the per-
formance of WNMFDDA with reduced computational overhead. However, mod-
els such as Linear Regression were excluded due to their insufficient accuracy
in capturing drug—disease associations. In addition, CUR matrix decomposition
(Columns, U matrix, Rows), a low rank approximation technique that reconstructs
the original matrix using selected actual columns and rows, may be useful in certain
applications. However, in our case, it introduced substantially higher computa-
tional and memory overhead compared to other evaluated methods. As a result,
it was excluded from the final comparison due to its inefficiency for the specific
requirements of our study.

Table 2 presents a comparative analysis of different single methods used to
predict drug-disease associations. The comparison is based on several factors, in-
cluding accuracy (measured using the MSE metric), memory usage, and execution
time, with the WNMFDDA method serving as a benchmark.
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Table 2: Performance metrics for single methods.

Method Name Memory Usage (MiB) MSE  Time (s)
WNMFDDA [9] 266.50 - 8.7815
Singular Value Decomposition (SVD) 258.45 0.0037 0.0757
Non-negative Matrix Factorization (NMF) 254.69 0.0036 0.0647
Principal Component Analysis (PCA) 256.01 0.0038 0.1430
Ridge Regression 260.41 0.0099 0.0482
Alternating Projections 260.41 0.0101 0.1231
Stochastic Gradient Descent (SGD) 261.00 0.0035 12.4861
Matrix Factorization (MF) 261.04 0.0037 0.0350
Robust PCA 261.04 0.0038 0.0440
Randomized Matrix Factorization 261.04 0.0037 0.0536
Probabilistic Matrix Factorization (PMF) 261.20 0.0004 224.0376
Lasso 8.03 0.0003 0.9046
ElasticNet 8.02 0.0003 0.6957
Ridge 8.84 0.0001 0.1134
Random Forest Regressor 0.82 0.0001 10.1102
Bagging Regressor 0.87 0.0001 0.8674
Extra Trees Regressor 0.79 0.0001 9.7420
Decision Tree Regressor 0.66 0.0001 0.1410

WNMFDDA is considered a baseline due to its high accuracy and ability to
capture complex relationships in drug-disease data. It leverages a combination
of matrix factorization and graph-based techniques to identify intricate patterns.
However, its computational demands are relatively high, requiring 266.50 MiB of
memory and nearly 9 seconds for execution. While it excels in accuracy, these
resource-intensive requirements make it less suitable for scenarios where efficiency
and speed are critical.

In contrast, several alternative methods offer comparable accuracy while con-
suming less memory and processing time. For instance, the Decision Tree Re-
gressor achieves performance close to WNMFDDA, sometimes even surpassing it
with lower MSE values. By optimizing resource usage, these models present viable
alternatives in cases where accuracy is essential, but efficiency is also a priority.

Overall, this comparison underscores that while WNMFDDA remains a strong
standard due to its accuracy, models like the Decision Tree Regressor provide a
more resource-efficient alternative. This enables the deployment of lower-cost mod-
els in time-sensitive and resource-limited settings without significantly sacrificing
prediction performance.

Table 3 compares hybrid and classical machine learning methods based on pre-
diction accuracy (Mean MSE with 95% confidence intervals), execution time, and
memory consumption. It includes a selected set of models ranging from classical
ML algorithms to hybrid approaches.

Among the hybrid models, Alternating Projections DecisionTreeRegres-
sor is the most time-efficient, with a runtime of only 0.1104s, while Probabilistic
Matrix Factorization DecisionTreeRegressor is the most computationally
expensive, requiring 234.97s. In terms of memory usage, all hybrid methods con-
sume approximately 291-293 MiB, reflecting the overhead of matrix factorization
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and latent feature construction.

In contrast, classical machine learning models are considerably more lightweight.
The Decision Tree Regressor has the lowest memory footprint at only 0.66
MiB, followed by Extra Trees (0.79 MiB) and Random Forest (0.82 MiB).
While some ensemble models like Random Forest and Extra Trees incur higher
runtimes (9 — 10s), methods like Ridge Regression maintain excellent efficiency,
completing in just 0.1134s with minimal memory usage (8.84 MiB).

Overall, hybrid models typically require more memory and, in some cases,
longer execution times due to their reliance on matrix decomposition techniques.
However, they can offer superior predictive accuracy, as demonstrated by the
NMF DecisionTreeRegressor. If higher accuracy is the priority, the NMF
DecisionTreeRegressor is the recommended choice. Conversely, for deployment in
resource-constrained environments, the Ridge model is more suitable due to its
minimal memory usage and fast execution time.

Compared to the baseline WNMFDDA, which has a memory usage of 266.50 MiB
and a runtime of 8.7815 s, our method NMF DecisionTreeRegressor improves re-
sults by reducing runtime by approximately 1.75 times and achieving a lower MSE
of 0.000025. Notably, Ridge shows substantial improvements, using about 30.15
times less memory and running approximately 77.46 times faster, while maintain-
ing a low MSE of 0.000028.

Table 3: Performance summary for hybrid & ML methods.

Method Name Mean MSE 95% CI Memory Usage (MiB) Time (s)
NMF DecisionTreeRegressor 0.000025 (0.000002 — 0.000048) 291.40 5.0142
PCA DecisionTreeRegressor 0.000175 (0.000063 — 0.000288) 292.01 3.0903
SVD DecisionTreeRegressor 0.000222 (0.000044 — 0.000400) 292.02 3.6566
Truncated SVD DecisionTreeRegressor 0.000182 (0.000042 — 0.000322) 292.12 1.8524
Randomized SVD DecisionTreeRegressor 0.000155 (0.000089 — 0.000220) 292.12 1.9543
Alternating Projections DecisionTreeRegressor 0.000099 (0.000051 — 0.000147) 292.68 0.1104
Stochastic Gradient Descent DecisionTreeRegressor 0.000097 (0.000042 — 0.000152) 292.86 55.6646
Probabilistic Matrix Factorization DecisionTreeRegressor 0.000116 (0.000046 — 0.000185) 292.94 234.9735
Lasso 0.000243 (0.000127 — 0.000359) 8.03 0.9046
ElasticNet 0.000243 (0.000127 - 0.000359) 8.02 0.6957
Ridge 0.000028 (0.000003 — 0.000054) 8.84 0.1134
RandomForestRegressor 0.000088 (0.000037 — 0.000139) 0.82 10.1102
BaggingRegressor 0.000085 (0.000027 — 0.000143) 0.87 0.8674
ExtraTreesRegressor 0.000071 (0.000033 — 0.000110) 0.79 9.7420
DecisionTreeRegressor 0.000083 (0.000035 — 0.000131) 0.66 0.1410

4.3 Model interpretability using LIME

Figure 2 illustrates an example LIME explanation for one representative instance
from the test set. The visualization highlights the top contributing features and
indicates whether they increased or decreased the predicted value. This local anal-
ysis enables clinicians and researchers to better understand the model’s reasoning
on a case-by-case basis.
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Figure 2: LIME explanation for a test sample. Features contributing positively or
negatively to the prediction are shown, along with their relative impact.

4.4 Noise sensitivity analysis

To assess the robustness of the regression model against noisy data, we performed
a noise sensitivity analysis. Gaussian noise was added to both the feature matrix
and the target values at varying levels: 0%, 5%, 10%, 15%, 20%, 25%, and 30%.
At each noise level, the model was retrained, and the MSE was computed on a
test set split from the noisy data.

The results are presented in Figures 3 and 4, showing the relationship between
noise level and prediction error. This analysis provides insights into the model’s
stability under noisy conditions, highlighting the importance of data quality when
deploying models in real-world scenarios.

5. Conclusion

This study investigates the balance between predictive accuracy and computa-
tional efficiency in drug—disease association prediction. Instead of proposing a new
model, we systematically evaluate combinations of well-established matrix factor-
ization techniques with machine learning regressors, emphasizing lightweight and
interpretable models such as the Decision Tree Regressor.

Our findings reveal that several of these hybrid approaches can match or sur-
pass the predictive accuracy of more complex methods like WNMFDDA, while
significantly reducing both memory usage and runtime. Importantly, our frame-
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Figure 3: Noise sensitivity of Decision Tree regressor model.
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Figure 4: Noise sensitivity of Ridge regressor model.

work relies solely on the drug—disease association matrix, eliminating the need for
auxiliary similarity data, which is often unavailable or inconsistent in practical
applications.

Among the evaluated methods, the NMF combined with DecisionTreeRegressor
delivers the highest predictive accuracy, albeit with increased memory consump-
tion. Conversely, the Ridge model provides a highly efficient alternative, offering
competitive performance with minimal resource requirements. This suggests a
practical guideline: choose NMF DecisionTreeRegressor when maximizing accu-
racy is paramount, and opt for the Ridge model when deploying in resource-limited
environments.

To improve model transparency, we also apply LIME (Local Interpretable
Model-agnostic Explanations), offering valuable insights into the predictions and
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supporting informed decision-making. Despite these advantages, the study has
limitations. It is based on a single benchmark dataset, which may affect the
generalizability of the results. Additionally, challenges such as data sparsity and
limited capacity of the models to capture complex biological relationships remain.

Nonetheless, our framework presents a practical, scalable, and interpretable
solution for drug repurposing, especially suited for settings with constrained com-
putational resources. Compared to the baseline WNMFDDA , our approaches show
notable improvements: the NMF DecisionTreeRegressor reduces runtime by ap-
proximately 1.75 times while improving predictive accuracy, and the Ridge model
achieves substantial resource savings, using roughly 30 times less memory and
running nearly 77 times faster, all while maintaining competitive accuracy.

Future work could integrate richer biomedical data to further enhance per-
formance. Moreover, incorporating temporal or longitudinal datasets may allow
modeling of dynamic drug—disease interactions. Ultimately, validating these com-
putational predictions across diverse datasets and through experimental or clinical
studies will be critical for their translation into therapeutic applications.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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