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Abstract

Pseudo-analysis has applications in several fields, including game theory
and optimization problems. Pseudo-analysis is a generalized form of ordinary
classical analysis that has two main operations. In fact, these two operations,
which are called pseudo-multiplication ⊗ and pseudo-addition ⊕, are the
basis of the formation of a semi-ring on the interval [c, d] of [−∞,∞]. The
pseudo-operations ⊗ and ⊕ on [c, d] produce three types of semi-ring. First,
the semi-ring ([c, d], sup,⊗) or ([c, d], inf,⊗) in which ⊗ is generated, the
second, a semi-ring where ⊗ and ⊕ are defined by the continuous and strictly
monotone function ψ, the third, a semi-ring in which both pseudo-operations
⊗ and ⊕ are idempotent. In this article, we intend to state and prove some
of the most recent generalizations of Carleman-Knopp’s type inequalities via
pseudo-integrals.
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1. Introduction

In fact, pseudo-analysis with two operations of pseudo-multiplication and pseudo-
addition on the real interval [c, d] of [−∞,∞] is a generalized form of classical
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analysis [1–3]. According to this structure, concepts were created such as pseudo-
division, pseudo-additive measure (⊕ −measure), pseudo-integral, pseudo-scalar
product, pseudo-convolution, pseudo-analytic exponential, pseudo-logarithm, etc.
A wide variety of applications of pseudo-analysis can be seen in applied sciences,
such as fuzzy sets and systems [4], game theory and decision making [5], Laplace
transform [6], optimization problems [7], etc.

Sugeno and Murofushi [8] introduced the concept of pseudo-integral and ⊕ −
measure based on the definition of pseudo-addition. ⊕ − measure is a type of
monotone measure. In the definition of a pseudo-integral, which is a generaliza-
tion of the Lebesgue integral, a type of multiplication corresponding to a pseudo-
addition is presented. The integral inequalities are a very useful tool in mathe-
matics. Important and different integral inequalities, including Barnes-Godunova-
Levin, Chebyshev, Carleman-Knopp, Jensen, Cauchy–Schwarz, are increasingly
used in various mathematical fields such as probability theory, differential equa-
tions, system theory, optimization, control theory and difference equations.

So far, many inequalities have been proven in the field of pseudo-integrals.
Pap and Štrboja [9] generalized the Jensen integral inequality. Abbaszadeh et al.
[10, 11] proved Hölder’s type integral inequality and Hadamard inequality. Agahi
et al. [12, 13] proved Chebyshev type inequalities and generalized the integral
inequalities of Hölder and Minkowski type.

We know that the well-known classical inequality of Carleman [14] is as follows:∫ +∞

0

exp

(
1

u

∫ u

0

ln(f(t))dt

)
du ≤ e

∫ +∞

0

f(u)du, (1)

where f : [0,+∞)→ [0,+∞) is a Riemann integrable function which
∫ +∞
0

f(u)du <
∞. We also know that∫

[0,+∞)

fdµ =

∫ +∞

0

f(u)du,

(2)
where

∫ +∞
0

f(u)du < ∞ and f ≥ 0 on [0,+∞) [15]. Equation (2) also holds [16]
whenf is a nonnegative continuous function on [0,+∞).

The inequality (1) is known as Knopp’s inequality [17]. But it is important to
note that Hardy himself claimed that G. Pólya had previously pointed out this
inequality [14]. Also, inequality (1) has been used in several mathematics and
physics fields [18, 19]. Some applications and generalizations of this inequality can
be found in [14, 18, 20–22].

In the following, a generalization of inequality (1) by Ma and Guo in the field
of fuzzy logic is provided.

Theorem 1.1. ([23]). Let h,H : [0,+∞) → [0,+∞) be strictly increasing func-
tions and

∫ +∞
0

h(u)du <∞. Then we have

−
∫ +∞

0

H

(
1

u

∫ u

0

H−1(h(t))dt

)
dµ ≤ −

∫ +∞

0

h(u)dµ.
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Also, in 2020, RomPán-Flores et al. [24] proved the following extension of inequal-
ity (1) in the field of fuzzy logic.

Theorem 1.2. Let h : [0,+∞) → [1,+∞) be a Sugeno-integrable function with
respect to the Lebesgue measure. Then

−
∫ +∞

0

exp

(
1

u
−
∫ u

0

ln(h(t))dt

)
du ≤ e−

∫ +∞

0

h(u)du.

It is important to note that in Theorem 1.1, the inner integral is the Lebesgue
integral and the outer integrals are the Sugeno integral, while in Theorem 1.2 all
integrals are Sugeno integrals.

2. Pseudo-integral
Let [c, d] be a closed (in some cases semi-closed) internal of [−∞,∞] and � be a
total ordering on [c, d].

Definition 2.1. ([6, 25]). A binary operation ⊕ on the interval [c, d] is called
pseudo-addition if, for all u1, u2, w ∈ [c, d],

1. u1 ⊕ u2 = u2 ⊕ u1,

2. (u1 ⊕ u2)⊕ w = u1 ⊕ (u2 ⊕ w),

3. If u1 � u2, then u1 ⊕ w � u2 ⊕ w,

4. 0⊕ ⊕ u1 = u1, where 0⊕ ∈ [c, d] is a neutral element.

Now, let we define [c, d]+ = {u1 : u1 ∈ [c, d],0⊕ � u1}.

Definition 2.2. ([6, 25]). Let ⊕ be a given pseudo-addition on [c, d]. A binary
operation ⊗ defined on [c, d] is pseudo-multiplication if for all u1, u2, w ∈ [c, d] and
t ∈ [c, d]+,

1. u1 ⊗ u2 = u2 ⊗ u1,

2. (u1 ⊗ u2)⊗ w = u1 ⊗ (u2 ⊗ w),

3. If u1 � u2, then u1 ⊗ t � u2 ⊗ t,

4. (u1 ⊕ u2)⊗ w = (u1 ⊗ w)⊕ (u2 ⊗ w),

5. 1⊗ ⊗ u1 = u1, where 1⊗ ∈ [c, d] is a neutral element.

The pseudo-operation ∗ : [c, d]2 → [c, d] is idempotent if for any u1 ∈ [c, d], u1∗u1 =
u1 holds. Clearly, the structure ([c, d],⊕,⊗) is a semicircle, see [26].

We consider special semirings with continuous operations according to the fol-
lowing process:
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Case I The pseudo-multiplication ⊗ is not idempotent, and the pseudo-addition
⊕ is an idempotent operation.

a)
(i) u1 ⊕ u2 := sup{u1, u2} , u1 ⊗ u2 := u1 + u2,

on the interval [−∞,+∞[. We have 0⊕ = −∞ and 1⊗ = 0.

(ii) u1 ⊕ u2 := inf{u1, u2} , u1 ⊗ u2 := u1 + u2,

on the interval ]−∞,+∞]. We have 1⊗ = 0 and 0⊕ = +∞.
b)

(i) u1 ⊕ u2 := sup{u1, u2} , u1 ⊗ u2 := u1.u2,

on the interval [0,+∞[. We have 0⊕ = 0 and 1⊗ = 1.

(ii) u1 ⊕ u2 := inf{u1, u2} , u1 ⊗ u2 := u1.u2,

on the interval ]0,+∞]. We have 1⊗ = 1 and 0⊕ = +∞.

Case II Both pseudo-operations ⊕ and ⊗ are not idempotent. The pseudo-
operations are generated by a continuous and strictly monotone function
ψ [27]. In this case, we will focus exclusively on the strict pseudo-addition
⊕.
By Aczel’s representation theorem [28] for each strict pseudo-addition ⊕
there exists a continuous and strictly monotone surjective function ψ (gen-
erator for ⊕), ψ : [c, d]→ [0,+∞] such that ψ(0⊕) = 0 and

u1 ⊕ u2 := ψ−1(ψ(u1) + ψ(u2)).

Using a generator ψ of a strict pseudo-addition ⊕ we can define a pseudo-
multiplication ⊗ by

u1 ⊗ u2 := ψ−1(ψ(u1)ψ(u2)),

with the convention 0× (+∞) := 0.

Case III Both pseudo-operations ⊕ and ⊗ are idempotent.

(i) u1 ⊕ u2 := sup{u1, u2} , u1 ⊗ u2 := inf{u1, u2},

on the interval [−∞,+∞]. We have 0⊕ = −∞ and 1⊗ = +∞.

(ii) u1 ⊕ u2 := inf{u1, u2} , u1 ⊗ u2 := sup{u1, u2},

on the interval [−∞,+∞]. We have 0⊕ = +∞ and 1⊗ = −∞.

Definition 2.3. ([1, 29]). Let U be a non-empty set and F be a σ-algebra of the
subsets of U . The set function m : F → [c, d]+ is a σ-⊕-measure if
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1. m(∅) = 0⊕,

2. For any sequence (Ei)i∈N of pairwise disjoint sets from E ,

m(
+∞
∪
i=1

Ei) =
+∞
⊕
i=1

m(Ei) := lim
n→+∞

n
⊕
i=1

m(Ei).

Definition 2.4. ([1, 29]). Let that U be a non-empty set, F is a σ-algebra of
the subsets of U and m : F → [c, d]+ is a σ-⊕-measure. The pseudo-integral of
a bounded measurable function f : U → [c, d], where the pseudo-operations are
defined by a continuous and monotone function ψ : [c, d]→ [0,∞], is defined by∫ ⊕

U

f(u)⊗ dm := ψ−1
(∫

U

(ψ ◦ f) d(ψ ◦m)

)
.

If U ⊆ [−∞,+∞] is a closed (semiclosed) interval, F = BU is σ-algebra of Borel
subsets of U and m = ψ−1 ◦ µ where µ represents the standard Lebesgue measure
on U , then the pseudo-integral for the function f takes the following form:∫ ⊕

U

f(u)⊗ dm = ψ−1
(∫

U

ψ
(
f(u)

)
dµ

)
. (3)

If we consider the semiring ([c, d], sup,⊗), where ⊗ is a pseudo-multiplication
defined by means of a generator ψ : [c, d]→ [0,+∞] and ψ is increasing bijection,
the pseudo-integral of a function f : U → [c, d] has the following form:∫ ⊕
U

f ⊗ dm := sup
u∈U

(
f(u)⊗ φ(u)

)
,

where φ : U → [c, d] is a density function given by φ(u) = m({u}). In this case,
we prefer to use the notation

∫ sup

U
f ⊗ dm instead of

∫ ⊕
U
f ⊗ dm.

Theorem 2.5. ([29]). Let ([0,∞], sup,⊗) be a semiring, when ⊗ is generated by
the increasing and continuous function ψ. Let m be sup-measure on

(
[0,∞],B[0,+∞]

)
,

where B[0,+∞] is σ-algebra of Borel subsets of the interval [0,∞], m(A) = sup
{
c |

µ({u | u ∈ A, u > c}) > 0
}

and ψ : [0,∞]→ [0,∞] be a continuous density. Then,
there exists a family mλ of ⊕λ-measure where ⊕λ is generated by ψλ, λ ∈ (0,∞)
such that for every continuous function f : [0,∞]→ [0,∞],∫ sup

f ⊗ dm = lim
λ→+∞

∫ ⊕λ
f ⊗ dmλ

= lim
λ→+∞

(
ψλ
)−1(∫

ψλ
(
f(u)

)
du

)
.

Remark 1. Consider the semiring ([0,∞], inf,⊗), when ⊗ is generated by the
decreasing and continuous function ψ. Similar to Theorem 2.5, the integral

∫ inf
f⊗
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dm can be derived as:∫ inf

f ⊗ dm = lim
λ→+∞

(
ψλ
)−1(∫

ψλ
(
f(u)

)
du

)
.

In order to present the pseudo-analytic exponential Exp(u), it is necessary to
introduce the pseudo-power. For w ∈ [c, d]+ and q ∈ (0,∞), the pseudo-power
w

(q)
⊗ is defined in the following way in a few steps.

• for n,m ∈ N and s = n
m w

(n)
⊗ := w ⊗ w ⊗ ...⊗ w︸ ︷︷ ︸

n−times

, w(0)
⊗ := 1⊗,

w
( 1
m )
⊗ := sup

{
u | u(m)

⊗ 6 w
}
, w(s)
⊗ = w

( nm )
⊗ =

(
w

( 1
m )
⊗

)(n)
. Note that w(s)

⊗

is well defined for all rational s ∈ (0,∞), independently of the representation
of s,

• if q is not rational, then according to the continuity of ⊗

w
(q)
⊗ := sup

{
w

(s)
⊗ | s ∈]0, q[, s ∈ Q

}
.

Obviously, if u1 ⊗ u2 = ψ−1(ψ(u1).ψ(u2)), then

u
(q)
⊗ = ψ−1(ψq(u)).

On the other hand, if ⊗ is idempotent, then u
(q)
⊗ = u for any u ∈ [c, d]+ and

q ∈ (0,∞).
In this paper, similar to [30] we suppose that the generator function ψ : [0,∞]→
[0,∞] is strictly monotone, onto, ψ(0⊕) = 0, ψ′(u) 6= 0 for all u , ψ ∈ C2 and
ψ−1 ∈ C2. By applying this function, we shall introduce some new operations as
follows: for all u, v ∈ [c, d], and n ∈ R

• Pseudo-division:
u⊗−1 v := ψ−1

(
ψ(u)

ψ(v)

)
,

provided v 6= 0⊕.

• Pseudo-scalar product:

n� u := ψ−1(n.ψ(u)).

• Pseudo-analytic exponential:

Exp⊕(u) :=

+∞∑
n=0

ψ−1
(

1

n!

)
⊗ u(n)⊗ ,

that is
Exp⊕(u) = ψ−1(exp(ψ(u))),

where exp(ψ(u)) is the standard exponential function.
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• Pseudo-logarithm:
Ln⊕(u) := ψ−1(ln(ψ(u))),

where ln(ψ(u)) is the standard logarithm function.

Note that the pseudo-multiplication ⊗ and the pseudo-scalar product � are dif-
ferent. Since the compatibility condition 1� u = u is not satisfied by ⊗ [31].

3. Main results

We present and prove inequality generalizations (1) related to pseudo-integrals.

Theorem 3.1. Let ([0,+∞),⊕,⊗) be a semiring. Also consider the generator ψ :
[0,+∞) → [0,+∞) of the pseudo-addition ⊕ such that the pseudo-multiplication
⊗ be a surjective and strictly increasing function. Then, for any σ-⊕-measure m,
the following inequality∫ ⊕

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

≤ψ−1(e)⊗ ψ−1(
∫ +∞

0

f(u)du), (4)

holds for any nonnegative Riemann integrable function f on [0,+∞) which
∫ +∞
0

f(u)du <
∞.

Proof. According to the definition of pseudo-division and by utilizing the equality
u1 ⊗ u2 = ψ−1(ψ(u1)ψ(u2)), we can apply the definition of pseudo-analytic expo-
nential along with Equation (3) from Definition 2.4 to derive∫ ⊕

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
ψ(ψ−1(1))

ψ(ψ−1(u))

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
ψ(ψ−1(

1

u
)).ψ(ψ−1(

∫ u

0

ln(f(t))dt))

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

∫ u

0

ln(f(t))dt

))
⊗ dm (5)

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
ψ

(
ψ−1(

1

u

∫ u

0

ln(f(t))dt)

)))
⊗ dm
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=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
1

u

∫ u

0

ln(f(t))dt

))
⊗ dm

= ψ−1

(∫
[0,+∞)

ψ

(
ψ−1

(
exp(

1

u

∫ u

0

ln(f(t))dt)

))
dµ

)

= ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)
.

Using Equation (2) and the fact that ψ−1 is increasing, we apply the classical
Carleman’s inequality (1) to get

ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)

= ψ−1
(∫ +∞

0

exp

(
1

u

∫ u

0

ln(f(t))dt

)
du

)
≤ ψ−1

(
e

∫ +∞

0

f(u)du

)
(6)

= ψ−1
(
ψ
(
ψ−1(e)

)
.ψ

(
ψ−1(

∫ +∞

0

f(u)du)

))
= ψ−1(e)⊗ ψ−1

(∫ +∞

0

f(u)du

)
.

Hence, combining (5) and (6) yields inequality (4). The proof is now completed.

Example 3.2. Let [c, d) = [0,+∞]. By using Theorem 3.1 we get the Carleman
type inequalities.

a) Let ψ(u) = u. The corresponding pseudo-operations are u1 ⊗ u2 = u1u2 and
u1 ⊕ u2 = u1 + u2. The inequality (4) produces the following form:∫ +∞

0

exp

(
1

u

∫ u

0

ln(f(t))dt

)
du ≤ e

∫ +∞

0

f(u)du,

which is the same as classical Carleman’s inequality (1).

b) Let ψ(u) = uα, α ∈ (1,+∞). The corresponding pseudo-operations are u1 ⊕
u2 = α

√
uα1 + uα2 and u1 ⊗ u2 = u1u2. The inequality (4) produces can be

expressed in the following form:

α

√∫ +∞

0

exp

(
1

u

∫ u

0

ln(f(t))dt

)
du ≤ α

√
e

∫ +∞

0

f(u)du.
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c) Let ψ(u) = ln(u + 1). The corresponding pseudo-operations are u1 ⊕ u2 =

(u1 + 1)(u2 + 1) − 1 and u1 ⊗ u2 = eln(u1+1) ln(u2+1)−1. The inequality (4)

results in the following expression:

e
∫ +∞
0

exp( 1
u

∫ u
0
ln(f(t))dt)du ≤ ee

∫ +∞
0

f(u)du.

Theorem 3.3. In Theorem 3.1, if ψ is a strictly decreasing function instead of a
strictly increasing function, we have:∫ ⊕

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

≥ψ−1(e)⊗ ψ−1
(∫ +∞

0

f(u)du

)
.

Proof. Clearly, we can give a completely similar proof as in Theorem 3.1 for this
case, except that ψ is a decreasing function and reverses the direction of the
inequality (6).

Example 3.4. Let [c, d) = [0,+∞) and ψ(u) = 1
eu . The corresponding pseudo-

operations are u1 ⊗ u2 = u1 + u2 and u1 ⊕ u2 = ln( e
u1+u2

eu1+eu2 ). Using Theorem 3.3
we have:

ln

(
1∫ +∞

0
exp

(
1
u

∫ u
0
ln(f(t))dt

)
du

)
≥ ln

(
1

e
∫ +∞
0

f(u)du

)
.

Theorem 3.5. Let ([0,+∞),⊕,⊗) be a semiring. Also consider the generator ψ :
[0,+∞) → [0,+∞) of the pseudo-addition ⊕ such that the pseudo-multiplication
⊗ be a surjective and strictly increasing function. Then, for any σ-⊕-measure m,
the following inequality∫ ⊕

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗
∫ ⊕
[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm

≤ψ−1(e)⊗
∫ ⊕
[0,+∞)

h⊗ dm, (7)

holds for any nonnegative continuous function h on [0,+∞) which
∫ ⊕
[0,+∞)

h⊗dm <
∞.

Proof. Using the definitions of pseudo-division and pseudo-logarithm, the Equa-
tion (3) of Definition 2.4, the equality u1⊗u2 = ψ−1(ψ(u1)ψ(u2)), and by applying
the definition of pseudo-analytic exponential we have:∫ ⊕

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗
∫ ⊕
[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm
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=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
ψ(ψ−1(1))

ψ(ψ−1(u))

)
⊗
∫ ⊕
[0,u]

ψ−1(ln(ψ(h(t))))⊗ dm

)
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

)
⊗ ψ−1

(∫ u

0

ψ(ψ−1(ln(ψ(h(t)))))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

)
⊗ ψ−1

(∫ u

0

ln(ψ(h(t)))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
ψ(ψ−1(

1

u
)).ψ(ψ−1(

∫ u

0

ln(ψ(h(t)))dt))

))
⊗ dm (8)

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

∫ u

0

ln(ψ(h(t)))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
ψ

(
ψ−1(

1

u

∫ u

0

ln(ψ(h(t)))dt)

)))
⊗ dm

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

))
⊗ dm

= ψ−1

(∫
[0,+∞)

ψ

(
ψ−1

(
exp(

1

u

∫ u

0

ln(ψ(h(t)))dt)

))
dµ

)

= ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
dµ

)
.

Since ψ ◦h is a continuous nonnegative function on [0,+∞) and
∫ ⊕
[0,+∞)

h⊗ dm <

∞, it follows from (2) that∫ +∞

0

ψ(h(u))du =

∫
[0,+∞)

ψ ◦ hdµ <∞.

If we apply the classical Carleman’s inequality (1) with f = ψ ◦ h, we obtain:∫ +∞

0

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
du ≤ e

∫ +∞

0

ψ(h(u))du. (9)

According to Equation (2), utilizing the fact that ψ−1 is increasing and applying
inequality (9), we obtain:

ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
dµ

)

= ψ−1
(∫ +∞

0

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
du

)
≤ ψ−1

(
e

∫ +∞

0

ψ(h(u))du

)
(10)
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= ψ−1
(
ψ
(
ψ−1(e)

)
.ψ

(
ψ−1(

∫ +∞

0

ψ(h(u))du)

))
= ψ−1(e)⊗ ψ−1

(∫ +∞

0

ψ(h(u))du

)
= ψ−1(e)⊗

∫ ⊕
[0,+∞)

h⊗ dm.

Hence, combining the equality (8) and the inequality (10) yields inequality (7).
The proof is now completed.

Theorem 3.6. In Theorem 3.5, if ψ is a strictly decreasing function rather than
a strictly increasing, the following inequality holds:∫ ⊕

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗
∫ ⊕
[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm

≥ψ−1(e)⊗
∫ ⊕
[0,+∞)

h⊗ dm.

Proof. Clearly, we can give a completely similar proof as in Theorem 3.5 for this
case, except that ψ is a decreasing function and reverses the direction of the
inequality (10).

Theorem 3.7. Under the assumptions outlined in Theorem 3.1, the following
inequality holds:∫ ⊕

[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm ≤ e� ψ−1

(∫ +∞

0

f(u)du

)
.

(11)

Proof. By using the definitions of pseudo-scalar product and pseudo-analytic ex-
ponential, and applying Equation (3) of Definition 2.4, we have∫ ⊕

[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u
.ψ(ψ−1(

∫ u

0

ln(f(t))dt))

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

∫ u

0

ln(f(t))dt

))
⊗ dm (12)

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
ψ

(
ψ−1(

1

u

∫ u

0

ln(f(t))dt)

)))
⊗ dm

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
1

u

∫ u

0

ln(f(t))dt

))
⊗ dm

= ψ−1

(∫
[0,+∞)

ψ

(
ψ−1

(
exp(

1

u

∫ u

0

ln(f(t))dt)

))
dµ

)
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= ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)
.

Consider Equation (2), the fact that ψ−1 is increasing, and the classical Carleman’s
inequality (1), we get:

ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)

= ψ−1
(∫ +∞

0

exp

(
1

u

∫ u

0

ln(f(t))dt

)
du

)
≤ ψ−1

(
e

∫ +∞

0

f(u)du

)
(13)

= ψ−1
(
e.ψ

(
ψ−1(

∫ +∞

0

f(u)du)

))
= e� ψ−1

(∫ +∞

0

f(u)du

)
.

Hence, combining the equality (12) and the inequality (13) yields inequality (11).
The proof is now completed.

Theorem 3.8. In Theorem 3.7, if ψ is a strictly decreasing function rather than
a strictly increasing function, we have:∫ ⊕
[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm ≥ e� ψ−1

(∫ +∞

0

f(u)du

)
,

Proof. Clearly, we can give a completely similar proof as in Theorem 3.7 for this
case, except that ψ is a decreasing function and reverses the direction of the
inequality (13).

Theorem 3.9. Based on the assumptions outlined in Theorem 3.5, the following
inequality is valid:∫ ⊕

[0,+∞)

Exp⊕

(
1

u
�
∫ ⊕
[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm ≤ e�

∫ ⊕
[0,+∞)

h⊗ dm. (14)

Proof. By the definition of pseudo-logarithm, Equation (3) of Definition 2.4, and
by applying the definitions of pseudo-scalar product and pseudo-analytic exponen-
tial, we have:∫ ⊕

[0,+∞)

Exp⊕

(
1

u
�
∫ ⊕
[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
1

u
�
∫ ⊕
[0,u]

ψ−1(ln(ψ(h(t))))⊗ dm

)
⊗ dm
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=

∫ ⊕
[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ψ(ψ−1(ln(ψ(h(t)))))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ln(ψ(h(t)))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u
.ψ(ψ−1(

∫ u

0

ln(ψ(h(t)))dt))

))
⊗ dm (15)

=

∫ ⊕
[0,+∞)

Exp⊕

(
ψ−1

(
1

u

∫ u

0

ln(ψ(h(t)))dt

))
⊗ dm

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
ψ

(
ψ−1(

1

u

∫ u

0

ln(ψ(h(t)))dt)

)))
⊗ dm

=

∫ ⊕
[0,+∞)

ψ−1
(
exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

))
⊗ dm

= ψ−1

(∫
[0,+∞)

ψ

(
ψ−1

(
exp(

1

u

∫ u

0

ln(ψ(h(t)))dt)

))
dµ

)

= ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
dµ

)
.

Since ψ ◦h is a continuous nonnegative function on [0,+∞) and
∫ ⊕
[0,+∞)

h⊗ dm <

∞, it follows from (2) that∫ +∞

0

ψ(h(u))du =

∫
[0,+∞)

ψ ◦ hdµ <∞.

Now using Equation (2), the fact that ψ−1 is increasing, and the inequality (9),
we have

ψ−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
dµ

)

= ψ−1
(∫ +∞

0

exp

(
1

u

∫ u

0

ln(ψ(h(t)))dt

)
du

)
≤ ψ−1

(
e

∫ +∞

0

ψ(h(u))du

)
(16)

= ψ−1
(
e.ψ

(
ψ−1(

∫ +∞

0

ψ(h(u))du)

))
= e� ψ−1

(∫ +∞

0

ψ (h(u)) du

)
= e�

∫ ⊕
[0,+∞)

h⊗ dm.

Hence, combining the equality (15) and the inequality (16) yields inequality (14).
The proof is now completed.
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Theorem 3.10. In Theorem 3.9, if ψ is a strictly decreasing function instead of
a strictly increasing function, the following inequality holds:∫ ⊕

[0,+∞)

Exp⊕

(
1

u
�
∫ ⊕
[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm ≥ e�

∫ ⊕
[0,+∞)

h⊗ dm.

Proof. We can provide a similar proof as in Theorem 3.9 for this case, noting that
ψ is a decreasing function, which reverses the direction of inequality (16).

Theorem 3.11. Let ([0,∞), sup,⊗) be a semiring. Also consider the generator ψ :
[0,+∞) → [0,+∞) of the pseudo-addition ⊕ such that the pseudo-multiplication
⊗ be a surjective and strictly increasing function. If m is a complete sup-measure
on [0,∞), then∫ sup

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

≤ lim
λ→∞

(
ψλ
)−1

(e)⊗ lim
λ→∞

(
ψλ
)−1(∫ +∞

0

f(u)du

)
,

holds for any nonnegative continuous function f on [0,+∞) which∫ +∞
0

f(u)du <∞.

Proof. By Theorem 2.5, there exists a family {mλ} of ⊕λ-measures, where ⊕λ is
generated by ψλ, λ ∈ (0,∞), such that

∫ sup

[0,+∞)
Exp⊕

((
ψ
−1

(1)⊗−1
ψ
−1

(u)
)
⊗ ψ−1

(∫ u
0

ln(f(t))dt

))
⊗ dm

= lim
λ→∞

∫ ⊕λ
[0,+∞)

Exp⊕

(((
ψ
λ
)−1

(1)⊗−1
(
ψ
λ
)−1

(u)

)
⊗
(
ψ
λ
)−1

(∫ u
0

ln(f(t))dt

))
⊗ dmλ (17)

= lim
λ→∞

(
ψ
λ
)−1

(∫
[0,+∞)

ψ
λ
(
Exp⊕

(((
ψ
λ
)−1

(1)⊗−1
(
ψ
λ
)−1

(u)

)
⊗
(
ψ
λ
)−1

(∫ u
0

ln(f(t))dt

)))
dµ

)
.

In an analogous way as in the proof of Theorem 3.1, we obtain
∫ ⊕λ
[0,+∞)

Exp⊕

(((
ψ
λ
)−1

(1)⊗−1
(
ψ
λ
)−1

(u)

)
⊗
(
ψ
λ
)−1

(∫ u

0

ln(f(t))dt

))
⊗ dmλ

=
(
ψ
λ
)−1

(∫
[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)
.

Now by applying Equation (2), the fact that
(
ψλ
)−1 is increasing, and the classical

Carleman’s inequality (1), we obtain:

(
ψλ
)−1(∫

[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)
≤

(
ψλ
)−1

(e)⊗
(
ψλ
)−1(∫ +∞

0

f(u)du

)
.

(18)
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Tending λ to +∞ in (18), we have

lim
λ→∞

(
ψλ
)−1(∫

[0,+∞)

exp

(
1

u

∫ u

0

ln(f(t))dt

)
dµ

)
(19)

≤ lim
λ→∞

((
ψλ
)−1

(e)⊗
(
ψλ
)−1

(

∫ +∞

0

f(u)du)

)
.

Thus, applying Theorem 2.5, combining (17) and (19) and by the continuity of ⊗,
we get∫ sup

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

≤ lim
λ→∞

(
ψλ
)−1

(e)⊗ lim
λ→∞

(
ψλ
)−1(∫ +∞

0

f(u)du

)
.

The proof is now completed.

Remark 2. The inequality dependent on inf-measure (Remark 1) can be obtained
in a completely similar way to Theorem 3.11 as follows:∫ inf

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗ ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

≥ lim
λ→∞

(
ψλ
)−1

(e)⊗ lim
λ→∞

(
ψλ
)−1(∫ +∞

0

f(u)du

)
,

where the generator ψ : [0,+∞) → [0,∞) of the pseudo-multiplication ⊗ is a
surjective and strictly decreasing function, f is nonnegative continuous function
on [0,+∞) which

∫ +∞
0

f(u)du <∞, and m is a complete inf-measure on [0,∞).

4. Further results
Theorem 4.1. Let ([0,∞), sup,⊗) be a semiring. Also consider the generator ψ :
[0,+∞) → [0,+∞) of the pseudo-addition ⊕ such that the pseudo-multiplication
⊗ be a surjective and strictly increasing function. If m is a complete sup-measure
on [0,∞), then∫ sup

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗
∫ sup

[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm

≤ lim
λ→∞

(
ψλ
)−1

(e)⊗
∫ sup

[0,+∞)

h⊗ dm,

holds for any nonnegative continuous function h on [0,+∞) which
∫ sup

[0,+∞)
h⊗dm <

∞.
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Proof. By Theorem 2.5, there exists a family {mλ} of ⊕λ-measures, where ⊕λ is
a generated by ψλ, λ ∈ (0,∞), such that

∫ sup

[0,+∞)

Exp⊕

((
ψ
−1

(1)⊗−1
ψ
−1

(u)
)
⊗
∫ sup

[0,u]

Ln⊕ (h(t))⊗ dm
)
⊗ dm

= lim
λ→∞

∫ ⊕λ
[0,+∞)

Exp⊕

(((
ψ
λ
)−1

(1)⊗−1
(
ψ
λ
)−1

(u)

)
⊗ lim
λ→∞

∫ ⊕λ
[0,u]

Ln⊕ (h(t))⊗ dmλ

)
⊗ dmλ (20)

= lim
λ→∞

(
ψ
λ
)−1

(∫
[0,+∞)

ψ
λ

(
Exp⊕

(((
ψ
λ
)−1

(1)⊗−1
(
ψ
λ
)−1

(u)

)
⊗
(
ψ
λ
)−1

(∫ u

0

ψ
λ
(Ln⊕ (h(t)))dt

)))
dµ

)
.

Like as in the proof of Theorem 3.5, we obtain∫ ⊕λ
[0,+∞)

Exp⊕

(((
ψλ
)−1

(1)⊗−1
(
ψλ
)−1

(u)
)
⊗
∫ ⊕λ
[0,u]

Ln⊕(h(t))⊗ dmλ

)
⊗ dmλ

=
(
ψλ
)−1(∫

[0,+∞)

exp

(
1

u

∫ u

0

ln(ψλ(h(t)))dt

)
dµ

)
.

Since ψλ ◦ h for any λ ∈ (0,+∞) is nonnegative continuous function on [0,+∞)

and
∫ ⊕λ
[0,+∞)

h⊗ dmλ <∞, it follows from (2) that∫ +∞

0

ψλ(h(u))du =

∫
[0,+∞)

ψλ ◦ hdµ <∞.

We apply now the classical Carleman’s inequality (1) with f = ψλ ◦ h. Then we
obtain:∫ +∞

0

exp

(
1

u

∫ u

0

ln(ψλ(h(t)))dt

)
du ≤ e

∫ +∞

0

ψλ(h(u))du.

Now by Equation (2), using the fact that
(
ψλ
)−1 is increasing and applying the

classical Carleman’s inequality (1), we have:

(
ψλ
)−1(∫

[0,+∞)

exp

(
1

u

∫ u

0

ln(ψλ(h(t)))dt

)
dµ

)

≤
(
ψλ
)−1

(e)⊗
(
ψλ
)−1(∫ +∞

0

(
ψλ
)−1

(h(u))du

)
.

(21)

As we approach λ to +∞ in Equation (21), we get:

lim
λ→∞

(
ψλ
)−1(∫

[0,+∞)

exp

(
1

u

∫ u

0

ln(ψλ(h(t)))dt

)
dµ

)
(22)
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≤ lim
λ→∞

((
ψλ
)−1

(e)⊗
(
ψλ
)−1(∫ +∞

0

(
ψλ
)−1

(h(u))du

))
.

By applying Theorem 2.5 and combining Equations (20) and (22), along with the
by the continuity of ⊗, we obtain:∫ sup

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗
∫ sup

[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm

≤ lim
λ→∞

(
ψλ
)−1

(e)⊗
∫ sup

[0,+∞)

h⊗ dm.

This completes the proof.

Remark 3. The inequality dependent on inf-measure (Remark 1) can be obtained
in a completely similar way to Theorem 4.1 as follows:∫ inf

[0,+∞)

Exp⊕

((
ψ−1(1)⊗−1ψ−1(u)

)
⊗
∫ inf

[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm

≥ lim
λ→∞

(
ψλ
)−1

(e)⊗
∫ inf

[0,+∞)

h⊗ dm,

where the generator ψ : [0,+∞) → [0,∞) of the pseudo-multiplication ⊗ is a
surjective and strictly decreasing function, h is nonnegative continuous function
on [0,+∞) which

∫ inf

[0,+∞)
h⊗ dm <∞, m is a complete inf-measure on [0,∞).

Theorem 4.2. Let ([0,∞), sup,⊗) be a semiring. Also consider the generator ψ :
[0,+∞) → [0,+∞) of the pseudo-addition ⊕ such that the pseudo-multiplication
⊗ be a surjective and strictly increasing function. If m is a complete sup-measure
on [0,∞), then∫ sup

[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm

≤e� lim
λ→∞

(
ψλ
)−1(∫ +∞

0

f(u)du

)
,

holds for any nonnegative continuous function f on [0,+∞) which∫ +∞
0

f(u)du <∞.

Proof. Clearly, we can give a completely similar proof as in Theorem 3.11 for this
case.

Remark 4. The inequality dependent on inf-measure (Remark 1) can be obtained
in a completely similar way to Theorem 4.2 as follows:∫ inf

[0,+∞)

Exp⊕

(
1

u
� ψ−1

(∫ u

0

ln(f(t))dt

))
⊗ dm
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≥e� lim
λ→∞

(
ψλ
)−1(∫ +∞

0

f(u)du

)
,

where the generator ψ : [0,+∞) → [0,∞) of the pseudo-multiplication ⊗ is a
surjective and strictly decreasing function, f is nonnegative continuous function
on [0,+∞) which

∫ +∞
0

f(u)du <∞, and m is a complete inf-measure on [0,∞).

Theorem 4.3. Let ([0,∞), sup,⊗) be a semiring. Also consider the generator ψ :
[0,+∞) → [0,+∞) of the pseudo-addition ⊕ such that the pseudo-multiplication
⊗ be a surjective and strictly increasing function. If m is a complete sup-measure
on [0,∞), then∫ sup

[0,+∞)

Exp⊕

(
1

u
�
∫ sup

[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm ≤ e�

∫ sup

[0,+∞)

h⊗ dm,

holds for any nonnegative continuous function h on [0,+∞) which
∫ sup

[0,+∞)
h⊗dm <

∞.

Proof. Clearly, we can give a completely similar proof as in Theorem 4.1 for this
case.

Remark 5. The inequality dependent on inf-measure (Remark 1) can be obtained
in a completely similar way to Theorem 4.3 as follows:∫ inf

[0,+∞)

Exp⊕

(
1

u
�
∫ inf

[0,u]

Ln⊕(h(t))⊗ dm

)
⊗ dm ≥ e�

∫ inf

[0,+∞)

h⊗ dm,

where the generator ψ : [0,+∞) → [0,∞) of the pseudo-multiplication ⊗ is a
surjective and strictly decreasing function, h is nonnegative continuous function
on [0,+∞) which

∫ inf

[0,+∞)
h⊗dm <∞, and m is a complete inf-measure on [0,∞).
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