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Abstract

In this paper, we introduce a gyrodistance on the gyrolinear space of func-
tions (whose gyronorm is measurable) from a measure space to the Möbius
disk D. The gyrodistance in question can be expressed in terms of a modifi-
cation of the Lebesgue integral, which we will call the Lebesgue gyrointegral.
The gyronormed space generated in this manner, which we will call the L1

gyrospace, is similar to the familiar L1 function space in many aspects. We
establish several properties of the latter, showing that many of them mir-
ror those of classical L1 spaces. Finally, we show that the gyrodistance in
question induces a metric topology on the L1 gyrospace.
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1. Introduction
Gyrogroups were introduced for the first time by Abraham A. Ungar in [1] and [2];
the concept arose naturally from the study of the nonassociative noncommutative
algebraic structure of 3-dimensional relativistically admissible velocities, (R3

c ,⊕),
where here R3

c denotes the set

R3
c = {x ∈ R3; |x| < c},
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and ⊕ denotes the relativistic velocity composition law given by the formula

x⊕ y =
x + y

1 + x·y
c2

+
γx

c2(γx + 1)

x× (x× y)

1 + x·y
c2

,

inside of which, in turn, c represents the speed of light, · represents the canonical
dot product of vectors, and × the canonical cross product of vectors. For two
nonparallel velocities x,y ∈ R3

c , it was observed that even though the velocities
x⊕y and y⊕x were not equal, they had the same magnitude. The operator that
Ungar employed to "fix" the nonassociativity and noncommutativity of the loop
structure of (R3

c ,⊕) was the unique rotation that transformed y ⊕ x into x ⊕ y
by a rotation about a screw axis parallel to x × y. This operator was called the
Thomas rotation:

tom[x,y] : R3 → R3, x,y ∈ R3
c .

The following weak-associative and weak-commutative relations in terms of the
Thomas rotation operator were obtained by Ungar:

x⊕ y = tom[x,y](y ⊕ x), (1)

x⊕ (y ⊕ z) = (x⊕ y)⊕ tom[x,y]z, (2)

(x⊕ y)⊕ z = x⊕ (y ⊕ tom[y,x]z). (3)

Equation (1) was called the weak commutative law, whereas Equations (2) and
(3) were called the right associative law, and the left associative law, respectively.
It was soon noticed [3] that an analogous behaviour was exhibited by the automor-
phisms of the complex unit disk D := {z ∈ C, |z| < 1}, i.e., Möbius transformations
of D.
More precisely, by introducing the Möbius addition, as in [3] and [4, p.2], defined
by the formula

z ⊕ w =
z + w

1 + zw
,

and by defining an operator called gyration

gyr[a, b] =
a⊕ b
b⊕ a

,

the structure we obtain is weakly associative and weakly commutative, satisfying
the following identities:

z ⊕ w = gyr[z, w](w ⊕ z),

z ⊕ (w ⊕ u) = (z ⊕ w)⊕ gyr[z, w]u,

(z ⊕ w)⊕ u = z ⊕ (w ⊕ gyr[w, z]u).

This analogy was the foundation for the subsequent generalization of the concept;
gyrogroups, which were introduced in [5], provided a more general framework for
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describing the behaviour of both Möbius transformations of D and relativistically
admissible velocities.
From the notion of gyrogroup then emerged gyrovector spaces, in [6] and [4].
Gyrogroups and gyrovector spaces soon started to be interesting, other than from
an algebraic perspective, from a geometric perspective as well; they provided a
powerful framework for the study of hyperbolic geometry.
Several "gyroequivalents" of well-known notions were given: gyrolines [4, p.62],
gyrometrics [4, p.61], gyrotranslations [4, p.64], gyromidpoints [4, p.69], and many
more.
In this article, we will introduce a generalization of L1 function spaces, called L1

gyrospaces. Many of the properties of the classical L1 vector space have "gyroana-
logues" in L1 gyrospaces. For example, the L1 space is a normed vector space, and
similarly, the L1 gyrospace is a gyronormed gyrolinear space. Furthermore, both
possess a natural metric topology induced by their underlying algebraic structures.
Introducing a "gyroequivalent" of L1 spaces is of interest, as such a structure can
be used to quantitatively compare functions in a way that is intrinsically hyper-
bolic, just like classical L1 spaces allow us to quantitatively compare functions
(via a metric function) in a "Euclidean setting". L1 spaces also play an impor-
tant role in various fields, such as machine learning and statistics. In particular,
the L1 norm is used to improve the prediction accuracy and the interpretability
of regression models, via feature selection (i.e., the removal of certain covariates,
thus yielding a simplified model). The technique in question is known as Lasso
(also known as L1 regularization), which was originally introduced in [7], while the
name was coined in [8]. Among other things, Lasso has been applied in economics
and finance as well [9].
Furthermore, the L1 norm has found applications in dynamical systems theory
and ergodic theory [10], due to the properties of L1 contractions and dilations, as
shown in [11].

2. Preliminaries
In this section, we will recall some preliminary notions we will use throughout this
paper. We start by presenting the definition of a gyrogroup [4, p.6].

Definition 2.1 (Gyrogroup). A groupoid (G,⊕) is a gyrogroup if its binary op-
eration satisfies the following axioms:

1. There is an identity element 0 ∈ G such that 0⊕ a = a for all a ∈ G;

2. For any a ∈ G, there exists an element 	a ∈ G such that 	a⊕ a = 0;

3. For any a, b, c ∈ G, there exists a unique element gyr[a, b]c ∈ G such that ⊕
obeys the left gyroassociative law:

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.
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4. The map gyr[a, b] : G → G is an automorphism of the groupoid (G,⊕), i.e.
gyr[a, b] ∈ Aut(G,⊕) for all a, b ∈ G. The map gyr[a, b] is called the gyration
of G generated by a, b;

5. The gyration gyr[a, b] generated by any a, b ∈ G obeys the left loop property:

gyr[a, b] = gyr[a⊕ b, b].

The operator gyr : G×G→ Aut(G,⊕) is called the gyrator of G. A gyrogroup
which has the following property (gyrocommutativity)

a⊕ b = gyr[a, b](b⊕ a),

for all a, b ∈ G will be called a gyrocommutative gyrogroup.
Some gyrocommutative gyrogroups admit scalar multiplication; this gives rise to
gyrovector spaces, just like abelian groups with a scalar multiplication give rise to
vector spaces. Let us give the full definition of a gyrovector space [4, p.55-56].

Definition 2.2 (Gyrovector space). A gyrovector space (X,⊕,⊗) is a gyrocommu-
tative gyrogroup (X,⊕), with the addition of a scalar multiplication ⊕ : R×X →
X that obeys the following axioms:

1. X is a subset of a real inner product space V , which we will call the carrier
of X, X ⊂ V.

2. X inherits the inner product and the norm of V ; both are invariant under
gyrations i.e.

gyr[u,v]a · gyr[u,v]b = a · b, ∀a,b,u,v ∈ X,

3. 1⊗ a = a,

4. (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a,

5. (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a),

6. |r| ⊗ a/‖r ⊗ a‖ = a/‖a‖, a 6= 0, r 6= 0,

7. gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a,

8. gyr[r1 ⊗ v, r2 ⊗ v] = idX ,

9. The set ±‖X‖ := {±‖a‖ : a ∈ X} forms a one-dimensional vector space
under operations ⊕′,⊗′, with the following two properties:

‖r ⊗ a‖ = |r| ⊗′ ‖a‖,

‖a⊕ b‖ ≤ ‖a‖ ⊕′ ‖b‖,
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for all r, r1, r2 ∈ R and for all a,b,u,v ∈ X.

The requirement imposed on the carrier space V in the above definition is
rather strong; for this reason, the notion of gyrovector space was generalized in
[12], by letting V be just a real normed space rather than an inner product space;
these new objects were called generalized gyrovector spaces.
Further generalizations of the concept of a gyrovector space were presented in [13];
we hereby present their definitions.

Definition 2.3 (Gyrolinear space). Let (X,⊕) be a gyrocommutative gyrogroup.
Let ⊗ be a map ⊗ : R×X → X. We say that (X,⊕,⊗) is a gyrolinear space if it
satisfies the following axioms:

1. 1⊗ x = x,

2. (r1 + r2)⊗ x = (r1 ⊗ x)⊕ (r2 ⊗ x),

3. (r1r2)⊗ x = r1 ⊗ (r2 ⊗ x),

4. gyr[u,v](r ⊗ x) = r ⊗ gyr[u,v]x,

5. gyr[r1 ⊗ v, r2 ⊗ v] = idX ,

For all r1, r2, r in R and all x,u,v in X.

Definition 2.4 (Normed gyrolinear space). Let (X,⊕,⊗) be a gyrolinear space
and let ‖ · ‖ be a map ‖ · ‖ : X → R≥0. Let φ be a strictly monotone increasing
bijection, φ : ‖X‖ → R≥0 where ‖X‖ := {‖x‖ ∈ R≥0 : x ∈ X}. We say that
(X,⊕,⊗, ‖·‖, φ) is a normed gyrolinear space if it satisfies the following conditions:

1. ‖x‖ = 0⇔ x = e,

2. φ(‖x⊕ y‖) ≤ φ(‖x‖) + φ(‖y‖),

3. φ(‖r ⊗ x‖) = |r|f(‖x‖),

4. ‖ gyr[u,v]x‖ = ‖x‖,

for any x,y,u,v ∈ X and any r ∈ R.

We conclude this preliminary section with some elucidations regarding the
notation we will employ throughout this document. First, we will use the symbols
⊕ and ⊗ to denote both the gyrovector space operations on gyrovectors and the
operations on the 1-dimensional real vector space ±‖V ‖ of their norms (and their
negations). This is done since it will be evident from the context when we will use
which, and also since when we will be working with the Möbius gyrovector space
the operation on norms will just be the Möbius addition restricted to real numbers
(strictly) between -1 and 1.
In the following section, we will only work with the Möbius normed gyrovector
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space (D,⊕,⊗, ‖ · ‖, arctanh), so our considerations will be restricted to the latter.
We recall that our Möbius addition is given by

u⊕ v =
u+ v

1 + uv
, u, v ∈ D.

We will use the terms "gyrosum" and "Möbius addition" interchangeably.
Our Möbius gyroscalar multiplication is given by

λ⊗ v = tanh(λ arctanh(‖v‖)) v

‖v‖
, v ∈ D, λ ∈ R.

Möbius addition is not associative and not commutative, but rather gyroassociative
and gyrocommutative; however, Möbius addition restricted to ‖D‖ := (−1, 1) is
both associative and commutative, as we can readily verify:

x⊕ y =
x+ y

1 + xy
=

x+ y

1 + xy
=

y + x

1 + yx
= y ⊕ x,

x⊕ (y ⊕ z) =
x+ y+z

1+yz

1 + x y+z
1+yz

=

x+y+z+xyz
1+yz

1+yz+xy+xz
1+yz

=
x+ y + z + xyz

1 + yz + xy + xz
,

(x⊕ y)⊕ z =

x+y
1+xy + z

1 + x+y
1+xy z

=

x+y+z+xyz
1+xy

1+xy+xz+yz
1+xy

=
x+ y + z + xyz

1 + xy + xz + yz
= x⊕ (y ⊕ z),

for any x, y, z ∈ ‖D‖. More precisely, as we also stated earlier, (‖D‖,⊕,⊗) will
have a vector space structure, and dimR(‖D‖) = 1. The associativity of ⊕ on the
norms (and their negations) allows us to write expressions like

n⊕
i=1

xi = x1 ⊕ x2 ⊕ · · · ⊕ xn, xi ∈ ‖D‖,

unambiguously. Furthermore, we will use

∞⊕
n=1

xn := lim
k→∞

k⊕
n=1

xn, xn ∈ ‖D‖, ∀n ∈ N,

to denote limits of partial gyrosums. If such a limit exists, we will write

∞⊕
n=1

xn = l ∈ ‖D‖.

We will also employ the following convention; given a function f from a measurable
space (X,Σ) to the extended real line R we will say f is a Borel function if and
only if f−1(∞), f−1(−∞) ∈ Σ and

f−1(A) ∈ Σ, ∀A ∈ B(R),
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where here B(R) denotes the Borel sigma algebra of R.
The last fact we will notice before we move on is the following:

∂

∂x
(x⊕ y) =

∂

∂x

(
x+ y

1 + xy

)
=

1 + xy − (x+ y)y

(1 + xy)2
=

1− y2

(1 + xy)2
.

Since (1 + xy)2 > 0 for all x, y ∈ (−1, 1), we will have that ∂x(x ⊕ y) > 0 if and
only if 1− y2 > 0, that is:

∂

∂x
(x⊕ y) > 0⇔ y ∈ (−1, 1). (4)

Similarly:
∂

∂y
(x⊕ y) > 0⇔ x ∈ (−1, 1). (5)

Thus, just like our regular sum on real numbers +, ⊕ is a "lexicographically
increasing binary operation" on (−1, 1), that is, it is increasing with respect to x
while keeping y fixed and viceversa.

3. The Lebesgue gyrointegral
Let f be a function from a measure space (X,Σ, µ) to the Möbius gyrovector
space (D,⊕,⊗, ‖ · ‖, arctanh). If ‖f‖ : (X,Σ, µ)→ [0, 1] is a Borel function (where
here ‖f‖ denotes the function obtained by taking the gyronorm of f) and has a
finite image set, then we will call f a simply normed function. This could be
rephrased alternatively in the following way:

Definition 3.1 (Simply normed function). A function from a measure space
(X,Σ, µ) to the Möbius gyrovector space is a simply normed function if and only
if ‖f‖ : (X,Σ, µ) → [0, 1] is a simple function in the classical sense of measure
theory.

We note that any measurable function f : (X,Σ, µ) → (D,⊕,⊗, ‖ · ‖, arctanh)
with finite image set is simply normed, but the converse is in general false; in fact
there can be functions whose image set is infinite in D but assumes a finite set of
norms.
One explicit example of this behaviour is the function ϕ : (R,B(R),m) → D
(where here B(R) denotes the real Borel sigma algebra and m is the Lebesgue
measure) defined by

ϕ(x) :=
1

2
eix ∈ D.

If ‖f‖ is a simple function, given a collection of disjoint sets (Ai)
n
i=1 such that⊔n

i=1Ai = X, we will be able to express it as:

‖f(x)‖ =

n∑
i=1

‖ai‖χAi(x), ‖ai‖ ∈ [0, 1],
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where χAi
is the characteristic function of the set Ai defined as:

χAi
(x) :=

{
1, if x ∈ Ai,

0, if x /∈ Ai.

Proposition 3.2. Given a simply normed function f : X → D, we will have that

‖f(x)‖ =

n∑
i=1

‖ai‖χAi
(x) =

n⊕
i=1

χAi
(x)⊗ ‖ai‖,

for all x ∈ X, i.e., the function can be expressed as a weighted gyrolinear com-
bination of characteristic functions equivalent to the linear combination provided
before.

Proof. First, we recall that 1⊗‖ai‖ = ‖ai‖ and 0⊗‖ai‖ = 0 ∈ ‖D‖ by the algebraic
properties of the Möbius gyrovector space.
Since the only values that χAi

(x) can assume are 1 and 0, from the previous
observation it follows that χAi(x)⊗ ‖ai‖ = χAi(x)‖ai‖ for all ‖ai‖ ∈ ‖D‖ and for
all x ∈ X. From this it follows that

n⊕
i=1

χAi
(x)⊗ ‖ai‖ =

n⊕
i=1

χAi
(x)‖ai‖.

We will now conclude the proof by proving that

n⊕
i=1

χAi(x)‖ai‖ =

n∑
i=1

‖ai‖χAi(x), (6)

but this follows by the assumption we made about the sets (Ai)
n
i=1 ⊂ Σ. In fact,

being disjoint sets, we will have that, for all x ∈ X, x will be in one and one only
of these sets, let’s call it Akx

, and thus χAi
(x) = δikx

, where here δikx
denotes the

Kronecker delta. Therefore, for all x ∈ X, both sides of Equation (6) reduce to
just ‖akx‖, and are thus equal.

Proposition 3.3. Two simply normed functions f, g can have their norms ex-
pressed as gyrolinear combinations of characteristic functions of the same family
of sets.

Proof. Let ‖f(x)‖ =
⊕n

i=1 χAi
(x)⊗‖ai‖ and ‖g(x)‖ =

⊕m
j=1 χBj

(x)⊗‖bj‖, where
here (Bj), (Ai) ⊂ Σ are collections of disjoint sets of Σ whose disjoint union yields
X. By observing that Ai =

⊔m
j=1(Ai ∩Bj) we will be able to write χAi as:

χAi(x) =

m⊕
j=1

χAi∩Bj (x) =

m∑
j=1

χAi∩Bj (x).
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By substituting the above identity in our expression for ‖f‖, we get

‖f(x)‖ =

n⊕
i=1

( m∑
j=1

χAi∩Bj (x)

)
⊗ ‖ai‖,

which, employing the distributivity of scalars of the 1-dimensional R-vector space
‖D‖, reduces to

‖f(x)‖ =

n⊕
i=1

m⊕
j=1

χAi∩Bj
(x)⊗ ‖ai‖.

In a completely analogous manner, we get

‖g(x)‖ =

m⊕
j=1

n⊕
i=1

χAi∩Bj (x)⊗ ‖bj‖,

which is our desired result.

This fact will prove useful when investigating the properties of the gyrointegral
we will now define.

Definition 3.4 (Lebesgue gyrointegral of simply gyronormed functions). Let f :
(X,Σ, µ) → (D,⊕,⊗, ‖ · ‖, arctanh) be a simply normed function from a measure
space to the Möbius gyrovector space. From what we have seen in the previous
propositions, we know that we can express ‖f(x)‖ as:

‖f(x)‖ =

n⊕
i=1

χAi
(x)⊗ ‖ai‖.

We now define the Lebesgue gyrointegral of the gyronorm of f on X with
respect to µ to be ∫

⊕
X

‖f(x)‖dµ(x) :=

n⊕
i=1

µ(Ai)⊗ ‖ai‖.

The first thing we need to check is the well-definedness of our gyrointegral.

Proposition 3.5. The Lebesgue gyrointegral for simply gyronormed functions is
well-defined, i.e., it is invariant with respect to the representation we choose for
the gyronorm ‖f‖.

Proof. Let (Ai)
n
i=1, (Bj)

m
j=1 ⊂ Σ be collections of disjoint sets with X =

⊔n
i=1Ai

and X =
⊔m

j=1Bj . Let

‖f(x)‖ =

n⊕
i=1

χAi(x)⊗ ‖ai‖, ‖f(x)‖ =

m⊕
j=1

χBj (x)⊗ ‖bj‖,
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be two equivalent representations of the gyronorm of our function f .
We notice that

Ai =

m⊔
j=1

(Ai ∩Bj), Bj =

n⊔
i=1

(Ai ∩Bj).

By the additivity of our measure µ we have

µ(Ai) =

m∑
j=1

µ(Ai ∩Bj), µ(Bj) =

n∑
i=1

µ(Ai ∩Bj).

Thus
n⊕

i=1

µ(Ai)⊗ ‖ai‖ =

n⊕
i=1

( m∑
j=1

µ(Ai ∩Bj)

)
⊗ ‖ai‖ =

n⊕
i=1

m⊕
j=1

µ(Ai ∩Bj)⊗ ‖ai‖

=

m⊕
j=1

n⊕
i=1

µ(Ai ∩Bj)⊗ ‖bj‖ =

m⊕
j=1

( n∑
i=1

µ(Ai ∩Bj)

)
⊗ ‖bj‖

=

m⊕
j=1

µ(Bj)⊗ ‖bj‖,

where in the above chain of equations we used the fact that Ai ∩ Bj 6= ∅ =⇒
‖ai‖ = ‖bj‖ alongside the distributivity of the gyroscalar multiplication over field
addition of scalars on ‖D‖, a consequence of its vector space structure.

The Lebesgue gyrointegral, in contrast with the linearity of the classical Lebesgue
integral, is a gyrolinear integral.

Proposition 3.6 (Gyrolinearity of the Lebesgue gyrointegral). Let f and g be
simply gyronormed functions from a measure space (X,Σ, µ) to the Möbius gy-
rovector space, then∫

⊕
X

(λ⊗ ‖f‖ ⊕ γ ⊗ ‖g‖)dµ = λ⊗
∫
⊕
X

‖f‖dµ⊕ γ ⊗
∫
⊕
X

‖g‖dµ. (7)

Proof. Using the conclusions of Proposition 3.3 we will start by writing our func-
tions ‖f(x)‖ and ‖g(x)‖ as gyrolinear combinations of characteristic functions of
the same family of disjoint sets (Bi)

n
i=1 ⊂ Σ

‖f(x)‖ =

n⊕
i=1

χBi
(x)⊗ ‖ai‖, ‖g(x)‖ =

n⊕
i=1

χBi
(x)⊗ ‖bi‖.

Furthermore we observe that, for the scalar product compatibility axiom of vector
spaces, and the distributive property

λ⊗ ‖f(x)‖ =

n⊕
i=1

(λχBi(x))⊗ ‖ai‖ =

n⊕
i=1

(λ⊗ ‖ai‖)χBi(x).
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The same considerations can be applied to ‖g(x)‖ and

λ⊗ ‖f‖ ⊕ γ ⊗ ‖g‖ =

n⊕
i=1

[(λ⊗ ‖ai‖)χBi(x)⊕ (γ ⊗ ‖bi‖)χBi(x)]

=

n⊕
i=1

χBi
(x)⊗ (λ⊗ ‖ai‖)⊕ χBi

(x)⊗ (γ ⊗ ‖bi‖)

=

n⊕
i=1

χBi
(x)⊗ (λ⊗ ‖ai‖ ⊕ γ ⊗ ‖bi‖).

From this, it follows that we will be able to write the Lebesgue gyrointegral of the
above function as∫
⊕
X

(λ⊗ ‖f‖ ⊕ γ ⊗ ‖g‖) dµ =

n⊕
i=1

µ(Bi)⊗ (λ⊗ ‖ai‖ ⊕ γ ⊗ ‖bi‖)

=

n⊕
i=1

µ(Bi)⊗ (λ⊗ ‖ai‖)⊕
n⊕

i=1

µ(Bi)⊗ (γ ⊗ ‖bi‖)

=

n⊕
i=1

λ⊗ (µ(Bi)⊗ ‖ai‖)⊕
n⊕

i=1

γ ⊗ (µ(Bi)⊗ ‖bi‖)

= λ⊗
n⊕

i=1

µ(Bi)⊗ ‖ai‖ ⊕ γ ⊗
n⊕

i=1

µ(Bi)⊗ ‖bi‖

= λ⊗
∫
⊕
X

‖f‖dµ⊕ γ ⊗
∫
⊕
X

‖g‖dµ.

By construction, we observe that the Lebesgue gyrointegral for simply-gyronormed
functions also respects the following monotonicity condition:

‖f‖ ≤ ‖g‖ =⇒
∫
⊕
X

‖f‖dµ ≤
∫
⊕
X

‖g‖dµ.

We now extend our Lebesgue gyrointegral to functions whose gyronorm is mea-
surable.

Definition 3.7 (Lebesgue gyrointegral of gyronorm-measurable functions). Let
f be a function from a measure space (X,Σ, µ) to the Möbius gyrovector space,
whose norm is a measurable function; then we define the Lebesgue gyrointegral
of ‖f‖ to be ∫

⊕
X

‖f‖dµ := sup

{∫
⊕
X

‖φ‖dµ ; ‖φ‖ ≤ ‖f‖, φ ∈ S‖·‖D
}
,
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where here S‖·‖D denotes the set of simply gyronormed functions, i.e. of functions
from (X,Σ, µ) to the Möbius gyrovector space, whose norms are simple functions.
We say that ‖f‖ is µ-gyrointegrable if the gyrointegral is in [0, 1], and we say that
‖f‖ is µ-gyrosummable if the gyrointegral is in [0, 1).

Proposition 3.8. Let (X,Σ, µ) be a measure space and f, g : X → D be func-
tions from said measure space to the Möbius gyrovector space with measurable
gyronorms, then the gyrointegral possesses the following monotonicity property

‖f‖ ≤ ‖g‖ =⇒
∫
⊕
X

‖f‖dµ ≤
∫
⊕
X

‖g‖dµ.

Proof. This fact follows immediately from Definition 3.7 and by the properties of
the supremum.

We now wish to show this integral is gyrolinear; in order to do so we will prove
an adaptation of the monotone convergence theorem to gyrointegrals.

Theorem 3.9 (Monotone convergence theorem). Let (X,Σ, µ) be a measure space.
If {‖fn‖}∞n=1 is a monotone increasing sequence of measurable gyronorms of func-
tions (from X to the Möbius gyrovector space) ‖fn‖ : X → [0, 1] and

‖f‖ = lim
n→∞

‖fn‖,

then
lim
n→∞

∫
⊕
X

‖fn‖dµ =
∫
⊕
X

‖f‖dµ.

Proof. The pointwise limit of the sequence of function gyronorms exists since the
latter is monotonically increasing. By the monotonicity of the gyrointegral (Propo-
sition 3.8), we have ∫

⊕
X

‖fn‖dµ ≤
∫
⊕
X

‖fn+1‖dµ ≤
∫
⊕
X

‖f‖dµ.

Thus the gyrointegrals are increasing, they admit a limit and

lim
n→∞

∫
⊕
X

‖fn‖dµ ≤
∫
⊕
X

‖f‖dµ.

For the other direction, let ‖ϕ‖ : X → [0, 1] be a simple function with ‖ϕ‖ ≤ ‖f‖.
We now fix a real value t ∈ (0, 1) and define

An := {x ∈ X ; ‖fn(x)‖ ≥ t⊗ ‖ϕ(x)‖}.

Since An can be expressed as {x ∈ X ; ‖fn(x)‖ − t⊗ ‖ϕ(x)‖ ≥ 0} and ‖fn(x)‖ −
t⊗ ‖ϕ(x)‖ is measurable, we will have that such sets will be measurable for all n.
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{An}n is thus an increasing sequence of measurable sets whose union is the whole
set X; from this it follows that∫

⊕
X

‖fn‖dµ ≥
∫
⊕
An

‖fn‖dµ ≥ t⊗
∫
⊕
An

‖φ‖dµ. (8)

Let us now use our supposition that the gyronorm of φ was simple to express it
as:

‖φ(x)‖ =

m⊕
i=1

χCi
(x)⊗ ‖ci‖.

The gyrointegral of ‖φ‖ on An will be∫
⊕
An

‖φ(x)‖dµ(x) =
∫
⊕
X

‖φ(x)‖dµxAn
=

m⊕
i=1

µ(Ci ∩An)⊗ ‖ci‖,

but since by the properties of measures, limn→∞ µ(Ci ∩An) = µ(Ci) we will have
that

lim
n→∞

∫
⊕
An

‖φ(x)‖dµ(x) =

m⊕
i=1

µ(Ci)⊗ ‖ci‖ =
∫
⊕
X

‖φ(x)‖dµ.

By taking the limit as n goes to infinity of the inequality (8) we then get limn→∞ ‖fn‖dµ ≥
t ⊗
∫
⊕

X
‖φ(x)‖dµ. By the arbitrairity of our constant real value 0 < t < 1, we

conclude that
lim

n→∞

∫
⊕
X

‖fn‖dµ ≥
∫
⊕
X

‖φ(x)‖dµ,

and since this inequality is valid for any simple function ‖φ‖ ≤ ‖f‖ we get in the
end

lim
n→∞

∫
⊕
X

‖fn‖dµ ≥
∫
⊕
X

‖f‖dµ,

by taking the supremum. This, together with the other direction we proved earlier,
implies that limn→∞

∫
⊕

X
‖fn‖dµ =

∫
⊕

X
‖f‖dµ.

The gyrolinearity of the gyrointegral will follow as a corollary of the fact just
proved.

Corollary 3.10. Let f, g : (X,Σ, µ) → (D,⊕,⊗, ‖ · ‖, arctanh) be two gyronorm-
measurable functions and let λ ∈ R, then:∫

⊕
X

(‖f‖ ⊕ ‖g‖)dµ =
∫
⊕
X

‖f‖dµ⊕
∫
⊕
X

‖g‖dµ,∫
⊕
X

λ⊗ ‖f‖dµ = λ⊗
∫
⊕
X

‖f‖dµ.
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Proof. Since ‖f‖ and ‖g‖ are non-negative measurable functions, there are two
increasing sequences of non-negative simple functions {‖fn‖}n∈N and {‖gn‖}n∈N
such that [14, page 31, theorem 4.1]

lim
n→∞

‖fn(x)‖ = ‖f(x)‖, lim
n→∞

‖gn(x)‖ = ‖g(x)‖.

Then, by the properties of simple functions and pointwise limits of functions,
we will have that ‖fn‖ ⊕ ‖gn‖ is an increasing sequence of non-negative simple
functions converging pointwise to ‖f‖ ⊕ ‖g‖. As a consequence of the monotone
convergence theorem proved above, we have∫

⊕
X

(‖f‖ ⊕ ‖g‖)dµ = lim
n→∞

∫
⊕
X

(‖fn‖ ⊕ ‖gn‖)dµ.

Now, appling the gyrolinearity of the gyrointegral for simple functions yields∫
⊕
X

(‖f‖ ⊕ ‖g‖)dµ = lim
n→∞

(∫
⊕
X

‖fn‖dµ⊕
∫
⊕
X

‖gn‖dµ
)

= lim
n→∞

∫
⊕
X

‖fn‖dµ⊕ lim
n→∞

∫
⊕
X

‖gn‖dµ

=
∫
⊕
X

‖f‖dµ⊕
∫
⊕
X

‖g‖dµ,

which is precisely the first point of our assertion.
For the second point, we select an increasing sequence of non-negative simple
functions {‖fn‖}n∈N as before and notice that∫

⊕
X

(λ⊗ ‖f‖)dµ = lim
n→∞

∫
⊕
X

(λ⊗ ‖fn‖)dµ

= lim
n→∞

λ⊗
∫
⊕
X

‖fn‖dµ

= λ⊗
∫
⊕
X

‖f(x)‖dµ(x).

The above chain of equalities follows by a combination of the monotone conver-
gence theorem for gyrointegrals, properties of pointwise convergence of functions
and the gyrolinearity of the gyrointegral for simple gyronorms.

4. Relationship with the Lebesgue integral

Another important consequence of the monotone convergence theorem for the
gyrointegral is the following:
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Theorem 4.1 (Relationship between the Lebesgue integral and the Lebesgue
gyrointegral). Let f be a function from a measure space (X,Σ, µ) to the Möbius
gyrovector space, whose gyronorm is a measurable and µ-gyrointegrable function,
then ∫

⊕
X

‖f(x)‖dµ(x) = tanh

(∫
X

arctanh(‖f(x)‖)dµ(x)

)
.

Proof. By [14, p.31, Theorem 4.1] there exists an increasing sequence of non-
negative simple functions {‖fn‖}n∈N such that limn→∞ ‖fn‖ = ‖f‖. Since the
functions in question are simple, their gyrointegrals will be equal to∫

⊕
X

‖fn(x)‖dµ(x) =

mn⊕
i=1

χAin ⊗ ‖ain‖.

By applying arctanh to both sides of the equation and by employing the identity
arctanh(x⊕ y) = arctanh(x) + arctanh(y) we get

arctanh

(∫
⊕
X

‖fn(x)‖dµ(x)

)
=

mn∑
i=1

arctanh(µ(Ain)⊗ ‖ain‖),

but arctanh(r ⊗ ‖a‖) = arctanh(tanh(r arctanh(‖a‖)) = arctanh(‖a‖) and so

arctanh

(∫
⊕
X

‖fn‖dµ
)

=

mn∑
i=1

µ(Ain) arctanh(‖ain‖) =

∫
X

arctanh(‖fn(x)‖)dµ,

(9)

which is equivalent to
∫
⊕

X
‖fn‖dµ = tanh

(∫
X

arctanh(‖fn(x)‖)dµ
)
. Now, since

‖fn‖ is increasing and non-negative, by the monotone convergence theorem for
gyrointegrals we have:

lim
n→∞

∫
⊕
X

‖fn‖dµ =
∫
⊕
X

‖f‖dµ.

If we substitute (9) for
∫
⊕

X
‖fn‖dµ in the above equation, we get∫

⊕
X

‖f‖dµ = lim
n→∞

tanh

(∫
X

arctanh(‖fn(x)‖)dµ
)
.

Since tanh is continuous on all of R, we have

lim
n→∞

tanh

(∫
X

arctanh(‖fn(x)‖)dµ
)

= tanh

(
lim
n→∞

∫
X

arctanh(‖fn(x)‖)dµ
)
.

Furthermore, since {‖fn‖}n∈N is an increasing sequence of functions, and arctanh
is a strictly monotonically increasing function on all of R, the sequence
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{arctanh(‖fn(x)‖)}n∈N will also be increasing, and thus by using the classical
monotone convergence theorem for the Lebesgue integral we have

lim
n→∞

∫
X

arctanh(‖fn(x)‖)dµ =

∫
X

arctanh(‖f(x)‖)dµ.

And thus ∫
⊕
X

‖f‖dµ = tanh

(∫
X

arctanh(‖f(x)‖)dµ
)
,

which is what we wanted to prove.

An immediate corollary of the fact we just proved is that the gyrointegral of
the gyronorm of a function f : (X,Σ, µ)→ D will be 0 if and only if its gyronorm
is almost everywhere 0 (that is, if it is 0 everywhere but possibly in sets of measure
0).

Corollary 4.2. Let f be a function from a measure space to the Möbius gyrovector
space, then ∫

⊕
X

‖f‖dµ = 0⇔ ‖f‖ = 0 a.e.

where here a.e is a shorthand notation for "almost everywhere".

Proof. Let’s start with the forward direction; if ‖f‖ = 0 almost everywhere, then
arctanh(‖f(x)‖) = 0 almost everywhere, and by the properties of the classical
Lebesgue integral ∫

X

arctanh(‖f(x)‖)dµ = 0,

thus
∫
⊕

X
‖f‖dµ = tanh(

∫
X

arctanh(‖f(x)‖)dµ) = 0.
For the reverse direction, let us suppose that∫

⊕
X

‖f‖dµ = tanh

(∫
X

arctanh(‖f(x)‖)dµ
)

= 0.

By the bijectivity of the tanh function, we deduce that
∫
X

arctanh(‖f(x)‖)dµ = 0,
and thus, by the properties of classical Lebesgue integrals, that arctanh(‖f(x)‖)
is 0 almost everywhere; this in turn implies that ‖f(x)‖ is 0 almost everywhere,
which is what we wanted to prove.

5. Function gyrolinear spaces
The classical function spaces Lp for p ∈ R≥1 are one of the central objects of study
of functional analysis; they form a complete metric topological vector space with
respect to the distance

δ(f, g) =

∫
X

|f(x)− g(x)|pdµ.
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In this section, we will show how to construct a gyrolinear gyronormed equivalent
of these function spaces.
We start our study of gyrolinear function spaces with the following observation.

Definition 5.1 (L1
D gyronorm of a function and L1

D functions). Let f be a gy-
ronorm measurable function from a measure space (X,Σ, µ) to the Möbius gy-
rovector space; we will call the L1

D gyronorm of f the following expression

‖f‖D1 :=
∫
⊕
X

‖f(x)‖dµ(x).

Furthermore, we say that f is a L1
D function if ‖f‖D1 =

∫
⊕

X
‖f(x)‖dµ(x) < 1. We

denote the set of all L1
D functions by L1

D(X,Σ, µ).

We will now prove that (an appropriate quotient of) L1
D(X,Σ, µ) will form a

normed gyrolinear space; let’s first prove the following more general fact.

Proposition 5.2. The set of functions from an arbitrary set X to the Möbius
gyrovector space D, F(X → D), forms a gyrolinear space under the following op-
erations:

(f ⊕ g)(x) := f(x)⊕ g(x), ∀x ∈ X,
(r ⊗ f)(x) := (r ⊗ f(x)), ∀x ∈ X,

where r ∈ R and f, g : X → (D,⊕,⊗, ‖ · ‖, arctanh).

Proof. The identity element is given by the constant function defined as γ0(x) := 0
for all x ∈ X, where here 0 denotes the gyroadditive identity of the Möbius gy-
rogroup.
For any function f , the function defined by f̃(x) := 	f(x) will be its gyroinverse
since (f̃ ⊕ f)(x) = 	f(x)⊕ f(x) = 0 = γ0(x) for all x ∈ X.
We furthermore notice that function addition is gyroassociative and gyrocommu-
tative:

(f ⊕ (g ⊕ h))(x) = f(x)⊕ (g(x)⊕ h(x)) = (f(x)⊕ g(x))⊕ gyr[f(x), g(x)]h(x),

The above chain of equalities follows by the definition of function gyrosum we gave
and the gyroassociative property of the classic gyrosum in the Möbius gyrovector
space. We now rewrite said expression as:

(f ⊕ (g ⊕ h)) = (f ⊕ g)⊕ gyr[f, g]h.

Similarly,

f ⊕ g = f(x)⊕ g(x) = gyr[f(x), g(x)](g(x)⊕ f(x)) = gyr[f, g](g ⊕ f).

Here the expression gyr[f, g]h is defined as:

gyr[f, g]h := gyr[f(x), g(x)]h(x).
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For any two functions f, g : X → D, the map gyr[f, g] is an automorphism of the
groupoid of functions from X to D under gyrosum of functions. The inverse of the
latter is given by

gyr−1[f, g] = gyr[g, f ],

and thus the map is injective; furthermore, for all x ∈ X:

gyr[f, g](h⊕ k) := gyr[f(x), g(x)](h(x)⊕ k(x))

= gyr[f(x), g(x)]h(x)⊕ gyr[f(x), g(x)]k(x)

= gyr[f, g]h⊕ gyr[f, g]k.

The surjectivity follows by treating gyr[f, g] as a parametrized family of gyrations
(automorphisms), and given a function h construct point-wise a function h̃ by
utilizing the surjectivity of the individual gyrations such that gyr[f, g]h̃ = h. From
these considerations it follows that, for any f, g ∈ F(X → D):

gyr[f, g] ∈ Aut(F(X → D),⊕).

The left loop property follows from the left loop property for the gyrator of the
Möbius gyrogroup. Thus, we have so far proven that (F(X → D),⊕) is a gyro-
commutative gyrogroup; let us now prove that it is a gyrolinear space.
We notice that 1 ⊗ f(x) = f(x) for all x ∈ X, and thus property 1 is satisfied.
Furthermore, (r1 +r2)⊗f(x) = (r1⊗f(x))⊕ (r2⊗f(x)) = (r1⊗f)⊕ (r2⊗f), and
thus property 2 is satisfied. Property 3 similarly follows from the gyrolinear space
structure of the Möbius disk, (r1r2)⊗ f(x) = r1 ⊗ (r2 ⊗ f(x)) = r1 ⊗ (r2 ⊗ f).
gyr[f, g](r ⊗ h) = gyr[f(x), g(x)](r ⊗ h(x)) = r ⊗ gyr[f(x), g(x)]h(x) for all x ∈ X
and thus property 4 is satisfied, i.e. gyr[f, g](r ⊗ h) = r ⊗ gyr[f, g]h.
Property 5 is satisfied since it will be satisfied for each x in the domain of the
input functions of the gyrator as a consequence of the gyrolinear space structure
of the Möbius disk, that is, for all x ∈ X:

gyr[r1 ⊗ f(x), r2 ⊗ f(x)] = idD,

and thus gyr[r1 ⊗ f, r2 ⊗ f ] = idF(X→D). In other words, we have just shown that
F(X → D) is a gyrolinear space, and our proof is complete.

Proposition 5.3. Let (X,Σ) be a sigma algebra, then the subset of F(X → D)
given by the Σ-measurable functions from X to the Möbius gyrovector space, which
we will denote as FΣ

m(X → D) is a gyrolinear subspace of F(X → D).

Proof. We start by noticing that the additive identity of F(X → D), γ0(x) := 0
(defined in this way for all x ∈ X) is in FΣ

m(X → D) since it is a constant function,
and constant functions are measurable.
We now just need to show that given two measurable functions f, g ∈ FΣ

m(X → D),
and for any r ∈ R, f⊕g and r⊗f are measurable. The latter is immediate, since the
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function r ⊗ f = tanh(r arctanh(‖f(x)‖)) f(x)
‖f(x)‖ is a composition of the continuos

(and thus measurable) function

D 3 z →

{
tanh(r arctanh(z)) z

‖z‖ , if z 6= 0,

0, if z = 0,

and the measurable function f(x).
For the second, it suffices to observe that since the function F : X → D2 defined by
F (x) := (f(x), g(x)) is measurable, and the gyrosum ⊕ : D×D→ D is continuous,
f(x) ⊕ g(x) = ⊕ ◦ F (x) is a composition of measurable functions, and it is thus
measurable.

We notice that if f, g ∈ L1
D(X,Σ, µ) and r ∈ R, then f⊕g, r⊗f, 0 ∈ L1

D(X,Σ, µ);
this is because

∫
⊕

X
0dµ = 0 < 1,∫
⊕
X

‖f ⊕ g‖dµ ≤
∫
⊕
X

‖f‖dµ⊕
∫
⊕
X

‖g‖dµ < 1,

and ∫
⊕
X

‖r ⊗ f‖dµ = |r| ⊗
∫
⊕
X

‖f‖dµ < 1.

From this, we deduce that also L1
D(X,Σ, µ) is a gyrolinear space, and it is a

gyrolinear subspace of both FΣ
m(X → D) and F(X → D). To give the latter the

structure of a gyronormed gyrolinear space, we need to consider an appropriate
quotient with respect to an equivalence relation, just like in classical Lebesgue
space theory. In particular, we will define our relation ∼ as:

f, g ∈ L1
D(X,Σ, µ), f ∼ g ⇔ f = g a.e.

where here by a.e. we mean "almost everywhere" in the classical sense of measure
theory, i.e. f(x) = g(x), for all x ∈ X \ E, with µ(E) = 0.
We will now consider the set of equivalence classes of L1

D(X,Σ, µ) with respect to
this relation ∼ and call it L1

D(X,Σ, µ)

L1
D(X,Σ, µ) := L1

D(X,Σ, µ)/ ∼ .

We define the gyrosum of two elements of L1
D(X,Σ, µ), [f ]∼, [g]∼ ∈ L1

D(X,Σ, µ)
as the equivalence class containing the gyrosum of two gyronorm-finite almost ev-
erywhere representatives (we can assert this since every µ-gyrosummable function
will be gyronorm-finite almost everywhere) f̃ ∈ [f ]∼ and g̃ ∈ [g]∼

[f ]∼ ⊕ [g]∼ := [f̃ ⊕ g̃]∼ ∈ L1
D(X,Σ, µ).

Similarly, we define the gyroscalar multiplication of [f ]∼ ∈ L1
D(X,Σ, µ) with the

scalar r ∈ R as the equivalence class containing r⊗ f̃ , for a gyronorm-finite almost
everywhere representative of [f ]∼

r ⊗ [f ]∼ := [r ⊗ f̃ ]∼.
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Let’s prove that these 2 operations are well defined, i.e. that they don’t depend on
the choice of representatives. Let f̃1, f̃2 ∈ [f ]∼ and g̃1, g̃2 ∈ [g]∼; by the definition
of the equivalence relation ∼, we have that:

f̃1(x) = f(x), ∀x ∈ X \ Ef1 , f̃2(x) = f(x), ∀x ∈ X \ Ef2 ,

g̃1(x) = g(x), ∀x ∈ X \ Eg1 , g̃2(x) = g(x), ∀x ∈ X \ Eg2 ,

where here µ(Ef1), µ(Ef2), µ(Eg1), µ(Eg2) = 0. From the above equations, we can
then deduce that

f̃1(x)⊕ g̃1(x) = f̃2(x)⊕ g̃2(x),

for all x ∈ X \(Ef1∩Eg1∩Ef2∩Eg2), i.e. f̃1⊕ g̃1 ∼ f̃2⊕ g̃2, and so the ⊕ operation
between equivalence classes is well-defined.
For the ⊗ operation, let r ∈ R be given, and let f̃1, f̃2 ∈ [f ]∼ be two representatives
of the class [f ]∼. As before, by using the definition of ∼, we note that for all
x ∈ X \Af1 :

f̃1(x) = f(x),

and for all x ∈ X \Af2

f̃2(x) = f(x),

with µ(Ef1), µ(Ef2) = 0. As a consequence of the above equality, we have r ⊗
f̃1(x) = r ⊗ f(x) for all x ∈ X \Af1 and r ⊗ f̃2(x) = r ⊗ f(x) for all x ∈ X \Af2

and thus
r ⊗ f̃1(x) = r ⊗ f̃2(x), for all x ∈ X \ (Af1 ∩Af2).

Since µ(Af1 ∩Af2) = 0, r ⊗ f̃1 ∼ r ⊗ f̃2, and so ⊗ is well defined as well.
From these considerations, and the gyrolinear space structure of L1

D(X,Σ, µ), it
follows that L1

D(X,Σ, µ) := L1
D(X,Σ, µ)/ ∼ forms a gyrolinear space with respect

to the operation ⊕ and ⊗ on equivalence classes just introduced.
In light of Corollary 4.2, the quotient we took was necessary in order to create a
normed gyrolinear space structure with respect to the L1

D gyronorm. We are now
ready to show that L1

D is a normed gyrolinear space, with gyronorm given by ‖ ·‖D1
(i.e. the L1

D gyronorm).
For simplicity, throughout the proof, we will drop the notation [f ]∼ for equivalence
classes of functions and just denote them as f .

Proposition 5.4 (L1
D is a normed gyrolinear space). Let (L1

D(X,Σ, µ),⊕,⊗) be
the gyrolinear space of equivalence classes modulo ∼ of functions of L1

D(X,Σ, µ),
then (L1

D(X,Σ, µ),⊕,⊗, ‖ · ‖D1 , arctanh) is a normed gyrolinear space.

Proof. ‖ · ‖D1 : L1
D → R is always non-negative by construction, and arctanh is a

strictly monotone increasing bijection from ‖L1
D‖ to R≥0. Let us now prove the

other required properties:

• ‖f‖D1 =
∫
⊕

X
‖f‖dµ = 0 if and only if f = [0]∼ ∈ L1

D, which is the gyroadditive
identity of L1

D.
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• We now show that φ(‖x ⊕ y‖) ≤ φ(‖x‖) + φ(‖y‖) (the second property of
Definition 2.4):

arctanh(‖f ⊕ g‖D1 ) = arctanh(tanh(

∫
X

arctanh ‖f ⊕ g‖dµ))

=

∫
X

arctanh(‖f ⊕ g‖)dµ ≤
∫
X

arctanh(‖f‖ ⊕ ‖g‖)dµ

=

∫
X

arctanh(‖f‖)dµ+

∫
X

arctanh(‖g‖)dµ

= tanh(arctanh(

∫
X

arctanh(‖f‖)dµ))

+ tanh(arctanh(

∫
X

arctanh(‖g‖)dµ))

= arctanh(‖f‖D1 ) + arctanh(‖g‖D1 ).

• The third property of Definition 2.4 holds as well:

arctanh(‖r ⊗ f |D1 ) = arctanh(tanh(

∫
X

arctanh(|r| ⊗ ‖f‖)dµ))

= arctanh(tanh(

∫
X

|r| arctanh(‖f‖)dµ))

= arctanh(tanh(|r|
∫
X

arctanh(‖f‖)dµ))

= arctanh(|r| ⊗ tanh(

∫
X

arctanh(‖f‖)dµ))

= |r| arctanh(⊗ tanh(

∫
X

arctanh(‖f‖)dµ))

= |r| arctanh(‖f‖D1 ).

• And finally, for the fourth property of Definition 2.4, we observe that:

‖ gyr[f, g]h‖D1 =
∫
⊕
X

‖ gyr[f(x), g(x)]h(x)‖dµ(x)

=
∫
⊕
X

‖h(x)‖dµ(x) = ‖h‖D1 .

From these properties, it follows that (L1
D(X,Σ, µ),⊕,⊗, ‖·‖D1 , arctanh) is a normed

gyrolinear space.

We will call the gyrolinear space L1
D the L-1 gyrospace. The gyronorm ‖ · ‖D1

induces a gyrodistance between functions defined by

d⊕(f, g) := ‖ 	 g ⊕ f‖D1 =
∫
⊕
X

‖ 	 g ⊕ f‖dµ.
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The strictly monotone increasing bijection arctanh "transforms" the gyrodistance
d⊕ into a metric, thus endowing L1

D with a metric topology.

Proposition 5.5. The function δ : L1
D → R≥0 defined by

δ(f, g) := arctanh(d⊕(f, g)) =

∫
X

arctanh(‖ 	 g ⊕ f‖)dµ, (10)

is a metric, and thus (L1
D, δ) is a metric space.

Proof. We show the assertion by proving that the metric axioms are satisfied:

• δ(f, g) ≥ 0 by construction.

• δ(f, g) = δ(g, f) since, by the properties of the gyronorm ‖ · ‖ of the Möbius
gyrovector space:

δ(f, g) =

∫
X

arctanh(‖ 	 g ⊕ f‖)dµ

=

∫
X

arctanh(‖ 	 gyr[	g, f ](	f ⊕ g)‖)dµ

=

∫
X

arctanh(‖ 	 f ⊕ g‖)dµ.

• δ(f, g) = 0 =⇒ arctanh(‖ 	 g ⊕ f‖) = 0 almost everywhere, and thus
‖	 g⊕ f‖ = 0 almost everywhere; by the properties of the gyronorm ‖ · ‖ on
the Möbius gyrovector space, we then deduce that f = g almost everywhere
(i.e. [f ]∼ = [g]∼ in L1

D and thus we have obtained our desired result).
For the converse, observe that if f = g almost everywhere then

arctanh(‖ 	 g ⊕ f‖) = 0,

almost everywhere and thus
∫
X

arctanh(‖ 	 g ⊕ f‖)dµ = 0.

• δ(f, h) =
∫
X

arctanh(‖ 	 h⊕ f‖)dµ. But by [4, theorem 3.11 page 61]:∫
X

arctanh(‖ 	 h⊕ f‖)dµ ≤
∫
X

arctanh(‖ 	 h⊕ g‖ ⊕ ‖ 	 g ⊕ f‖)dµ

= δ(f, g) + δ(g, h).

We will now provide some particularly interesting instances of L1
D(X,Σ, µ)

spaces, and explain how we can operatively use the theoretical framework we just
built in said spaces.
The measurement of the distance between functions from R to R or C to C is of
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great importance in the theory of signals, since such quantitative metrics regarding
signals can help assess which one is closest to another arbitrary signal.
One practical goal we would want to achieve is that of measuring distances between
functions from the Möbius disk to itself, in a way that is intrinsic to the hyperbolic
nature of the space. In the next example we will see that L1

D spaces allow us to
achieve this goal (for L1

D functions).

Example 5.6 (Distance between functions from the Möbius disk to itself.). The
Möbius disk D := {z ∈ C, |z| < 1} together with the Riemannian metric:

ds2 =
4‖dx‖2

(1− ‖x‖2)2
=

4(dx2 + dy2)

(1− x2 − y2)2
,

is a Riemannian manifold; this Riemannian metric induces a natural measure-
theoretic structure on D, thanks to the volume form:

dV =

(
2

1− x2 − y2

)2

dx dy.

In fact, the volume form we defined above generates a positive linear functional on
Cc(D) (the space of compactly supported complex-valued functions), ψ, defined
as:

ψ : f → ψ(f) :=

∫
D
fdV.

But by the Riesz-Markov-Kakutani representation theorem, there exists a unique
positive Borel measure µD on D such that:

ψ(f) =

∫
D
f(z)dµD(z), ∀f ∈ Cc(D).

Since the Riemannian manifold given by D together with the Riemannian metric
ds we defined above is σ-compact, the measure µD will be a Radon measure.
Then, for functions f : D → D, with measurable gyronorm, we will be able to
compute their gyronorm, given by:

‖f‖D1 =
∫
⊕
D

‖f(z)‖dµD(z).

More concretely, by using Theorem 4.1, we can compute the gyronorm of said
function by computing:

‖f‖D1 = tanh

(∫
D

arctanh(‖f(z)‖)
(

2

1− x2 − y2

)2

dx dy

)
.

If the function f is a L1
D function, the gyronorm will be strictly less than 1, and

we will be able to compute and make sense of distances between functions since
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L1
D(D,B(D), µD,⊕,⊗, ‖ · ‖D1 , arctanh) has a metric space structure.

In particular, given two functions f : D → D and g : D → D, both members of
L1
D(D,B(D), µD,⊕,⊗, ‖·‖D1 , arctanh), we will be able to compute their gyrodistance

by computing the following integral:

d⊕(f, g) = tanh

(∫
D

arctanh(‖ 	 g(z)⊕ f(z)‖)
(

2

1− x2 − y2

)2

dx dy

)
.

Whereas, for computing their distance, it suffices to take the hyperbolic arctangent
of the above expression, that is:

δ(f, g) = arctanh(d⊕(f, g))

=

∫
D

arctanh(‖ 	 g(z)⊕ f(z)‖)
(

2

1− x2 − y2

)2

dx dy.

In other words, L1
D allow us to quantitatively compare L1

D functions from the
Möbius disk to itself, by considering the natural measure space structure of D,
(D,B(D), µD), in a way that is native to its hyperbolic geometry.

L1
D spaces can also be used to compute distances between functions from H to

H (where here H denotes the upper half plane, H := {z ∈ C , Im(z) > 0}) in the
Poincaré half-plane model of hyperbolic geometry. This is achieved through the
use of the Cayley transform, C : H→ D.

Example 5.7 (Distance between functions from H to H). Let us consider the
upper half plane H together with the Riemannian metric:

ds2 =
dx2 + dy2

y2
.

The volume form induced by the metric in question is:

dV =
dx dy

y2
.

In a manner similar to Example 5.6, the above volume form will, thanks to the
Riesz-Markov-Kakutani representation theorem, induce a measure on H, which we
will denote as µH.
We will, from now on, consider H together with the following measure space struc-
ture: (H,B(H), µH).
Let C : H→ D denote the Cayley transform, given by:

C(z) =
z − i
z + i

.

Let f : H → H be a function from the upper half plane to itself; by composing
said function with the Cayley transform, we will obtain a new function g from the
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upper half plane to the Möbius disk, g : H→ D.
At this point, by assuming the property of gyronorm measurability, we will be able
to compute the gyronorm of g, given by:

‖g‖D1 =
∫
⊕
H

‖g(z)‖dµH(z).

More concretely, by using Theorem 4.1, we can compute the gyronorm of said
function by computing:

‖g‖D1 = tanh

(∫
H

arctanh(‖g(z)‖)dx dy
y2

)
,

which, given in terms of the original function f : H→ H is:

‖g‖D1 = tanh

(∫
H

arctanh

(∥∥∥∥f(z)− i
f(z) + i

∥∥∥∥)dx dyy2

)
.

We will be more interested in functions f : H → H for which ‖g‖D1 < 1, for
g = C(f(z)). For this reason, we will give a special name to this class of functions.

Definition 5.8. Let f : H → H be a function from the upper half plane to
itself, and let C(z) denote the Cayley transform; we will say that f is a Möbius
gyrosummable function if the composite function C(f(z)) is a L1

D function, i.e.
if ‖C(f(z))‖D1 < 1.

It is possible to compute the gyrodistance between two Möbius gyrosummable
functions, ϕ1 : H→ H and ϕ2 : H→ H by using the L1

D space as an intermediary,
through the following integral:

‖ 	 C(ϕ1(z))⊕ C(ϕ2(z))‖D1 =
∫
⊕
H

‖ 	 C(ϕ1(z))⊕ C(ϕ2(z))‖dµH.

We will use the symbol dH→D
⊕ (ϕ1, ϕ2) to denote such gyrodistance. Operationally,

this value is given by the following integral:

dH→D
⊕ (ϕ1, ϕ2) = tanh

(∫
H

arctanh(‖ 	 C(ϕ1(z))⊕ C(ϕ2(z))‖)dx dy
y2

)
.

There are also two other noteworthy cases that we will explore; the first one
is that of functions from C to D. In this case, we will consider the complex
numbers together with the 2-dimensional Lebesgue measure, and to compute the
gyrodistance between two functions we will compute the following integral:

d⊕(f, g) = tanh

(∫
C

arctanh(‖ 	 g(z)⊕ f(z)‖)dx dy
)
.

The second one is that of functions from the real number to the Möbius disk. In
this case, we will consider the real numbers together with the Lebesgue measure
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on R, and to compute the gyrodistance between two functions we will compute
the following integral:

d⊕(f, g) = tanh

(∫
R

arctanh(‖ 	 g(x)⊕ f(x)‖)dx
)
.

6. Conclusions
In this paper, we showed that the set of functions from an arbitrary measure space
to the Möbius disk D is a gyrolinear space, and that furthermore it is possible to
endow the latter with a gyrodistance, which in turn induces a metric topology on
the space. This gyrodistance was constructed through the introduction of a new
operator, called the Lebesgue gyrointegral. Furthermore, we showed how, through
the use of the gyrodistance we defined, we can calculate distances between func-
tions from the Möbius disk to itself, as well as functions from other spaces to the
Möbius disk, such as functions from the upper half plane to D, from C to D or
from R to D.
Several directions for future work naturally arise. One possibility is to extend
the analysis to higher-dimensional analogues of the disk, by considering functions
from an arbitrary measure space to the Möbius ball Vn

s := {v ∈ Rn , ‖v‖ < s},
endowed with its natural gyrovector space structure.
Another direction involves considering gyrospaces of functions from an arbitrary
measure space to the Einstein gyrovector spaces, thus allowing for the measure-
ment of distances and the quantitative comparison of functions within a Bel-
trami–Klein hyperbolic framework. Finally, identifying a generalization of Lp

spaces to a hyperbolic setting could yield further insights.
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