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Abstract

This study presents an innovative numerical scheme to address the non-
linear time-fractional coupled Klein-Gordon-Zakharov equation. The spatial
derivatives are approximated using a pseudo-spectral method, which utilizes
Lagrange polynomials at Chebyshev points as basis functions. Time dis-
cretization is accomplished through the finite difference method. The pro-
posed scheme is rigorously proven to be unconditionally stable, ensuring ro-
bustness in numerical simulations. Furthermore, the time convergence order
of the scheme is derived, highlighting its reliability. Numerical experiments
demonstrate the exceptional accuracy and robustness of the method, with its
exponential precision offering precise and reliable solutions. This approach
serves as a powerful tool for solving complex non-linear partial differential
equations, making it highly applicable in various scientific and engineering
domains that demand effective and efficient computational techniques.
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1. Introduction
During the last few decades, fractional differential equations (FDEs) have been
significantly used in several models, including signal processing, traffic flow and
diffusion models, and the fluid flow model [1–4]. Also, non-integer calculus has
been given attention in some fields of mathematical biology, electro-chemistry [5],
and different physical phenomena, including relative stress and strain for elastic
or viscoelastic materials and Hook’s law [4, 6, 7].

Plasma, which consists of two intertwined fluids –the electron fluid and the
ion fluid– is modeled. These fluids exhibit different behaviors on two distinct
timescales: fast and slow. The significant disparity in mass between electrons
and ions gives rise to this dichotomy. When subjected to an external force, elec-
trons accelerate much more rapidly than ions due to their significantly lower mass.
Specifically, we define u(x, t) as a complex function related to the fast timescale
component of the electric field generated by electrons, and v(x, t) as the real func-
tion representing the deviation of ion density from its equilibrium state. To de-
scribe the interaction between Langmuir waves and ion-acoustic waves in plasma,
we can use coupled Klein-Gordon-Zakharov (KGZ) equations [8–10]

∂αu

∂tα
= ∆u− u− uv − |u|2u+ f,

∂βv

∂tβ
= ∆v + ∆(|u|2) + g,

(1)

where 1 ≤ α, β ≤ 2, and with the following initial conditions{
u(x, 0) = u0(x),
∂u
∂t (x, 0) = u1(x),

{
v(x, 0) = v0(x),
∂v
∂t (x, 0) = v1(x),

(2)

for x ∈ Ω ⊆ R2, and the homogeneous boundary conditions

u(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. (3)

Here f, g, u0, u1, v0, and v1 are known smooth functions, Ω is a rectangle in R2,
and T > 0 is the final time. The ∂αu

∂tα and ∂βv
∂tβ

denote the Caputo-type fractional
derivative of order α and β, respectively.

The Caputo fractional derivative of order α is defined as

CDα
xf(x) =

1

Γ(n− α)

∫ x

0

f (n)(t)

(x− t)α+1−n dt, n− 1 < α < n,

where Γ(·) is the Gamma function [4, 6].
The KGZ equations exhibit a shape similar to both the Zakharov equations and

the Klein-Gordon-Schrödinger equations. Researchers have investigated the exis-
tence of solutions and the stability behavior of KGZ equations in various studies,
as referenced by the following works: [11–14].



Mathematics Interdisciplinary Research 10 (4) (2025) 365− 384 367

Ray and Sahoo [15] employed the homotopy disorder transformation method
and the modified homotopy analysis method to derive approximate solutions for
the KGZ equation. In another study [16], the trivial conservation laws and exact
solutions were further modified and extended using the hyperbolic function method
for the non-linear coupled KGZ equation. Jia et al. [17] utilized an efficient ex-
ponential sum approximation to estimate time dependencies while employing the
Fourier spectral method to approximate spatial derivatives in the KGZ equation.
Additionally, several other numerical methods have been implemented for solving
KGZ equations, including the q-homotopy analysis transform method (q-HATM)
[18], the quintic B-spline based differential quadrature method [19], and the Differ-
ential Quadrature (DQ) and Globally Radial Basis Functions (GRBFs) methods
[9].

This paper comprises six sections. In the second section, we explain the method
of discretizing the time derivatives. In the third section, we introduce the pseudo-
spectral method and apply it to the non-linear coupled KGZ equation, resulting
in the final discretized equation. In the subsequent section, we demonstrate that
the presented scheme is unconditionally stable. Moving on to the fifth section,
we showcase the effectiveness of the proposed method by implementing three test
problems. Finally, we give the conclusion of this paper.

2. Time discretization scheme

In this section, we discuss how to discretize the time derivative terms. Considering
that the time derivation is fractional, we introduce some definitions and lemmas
to do this.

Let uk = u(x, tk) is a grid function on Ω× (0, T ). We introduce the following
symbols:

uk−1/2 =
1

2

(
uk + uk−1

)
, δtu

k−1/2 =
1

η

(
uk − uk−1

)
,

δ2
xu

k−1/2 =
1

2

(
δ2
xu

k + δ2
xu

k−1
)
, (4)

where tk = kη (k = 0, 1, · · · , N), and η is the time step size.
The approximations of the fractional time derivatives in Equation (1) are given

as [20]

∂αuk

∂tα
≈ 1

ηΓ(2− α)

[
µ0δtu

k−1/2 −
k−1∑
i=1

(µk−i−1 − µk−i) δtui−1/2 − µk−1φ1

]
, (5)

∂βvk

∂tβ
≈ 1

ηΓ(2− β)

[
µ̂0δtv

k−1/2 −
k−1∑
i=1

(µ̂k−i−1 − µ̂k−i) δtvi−1/2 − µ̂k−1φ2

]
, (6)
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where φ1 = ∂u
∂t |t=0 and φ2 = ∂v

∂t |t=0. The coefficients µj and µ̂j are obtained as

µj =

∫ tj+1

tj

dt

tα−1
=
η2−α

2− α
[
(j + 1)2−α − (j)2−α] , j ≥ 0, (7)

µ̂j =

∫ tj+1

tj

dt

tβ−1
=
η2−β

2− β
[
(j + 1)2−β − (j)2−β] , j ≥ 0. (8)

Lemma 2.1. ([20]). Let h(t) ∈ C2[0, tk], then we have∣∣∣∣∣
∫ tk

0

h′(t)
dt

(tk − t)α−1
− 1

η

µ0h(tk)−
k−1∑
j=1

(µk−j−1 − µk−j)h(tj)− µk−1h(t0)

 ∣∣∣∣∣
≤ 1

2− α

[
2− α

12
+

23−α

3− α
− (1 + 21−α)

]
max

1≤t≤tk
|h′′(t)|η3−α,

where µj is defined in (7) and 1 < α < 2.

Therefore, according to the Lemma 2.1, the accuracy of approximations (5)
and (6) are of orders η3−α and η3−β , respectively. Now, using the approximations
(4)-(6), we obtain the time discrete scheme of coupled KGZ equation (1) as

1

ηΓ(2− α)

[
µ0δtu

k−1/2 −
k−1∑
i=1

(µk−i−1 − µk−i) δtui−1/2 − µk−1φ1

]
= δ2

xu
k−1/2

+ δ2
yu

k−1/2 − uk−1/2 − (uv)k−1/2 − (|u|2u)k−1/2 + fk−1/2, (9)

1

ηΓ(2− β)

[
µ̂0δtv

k−1/2 −
k−1∑
i=1

(µ̂k−i−1 − µ̂k−i) δtvi−1/2 − µ̂k−1φ2

]
= δ2

xv
k−1/2

+ δ2
yv
k−1/2 + ∆(|u|2)k−1/2 + gk−1/2, (10)

for k = 1, 2, . . . , N . In the next section, we will discuss how to apply the pseudo-
spectral method on the Equations (9)-(10).

3. The Pseudo-spectral method
In this section, we give a brief explanation of the pseudo-spectral methods (for
more information about the spectral and pseudo-spectral methods, see [21]). In
pseudo-spectral methods, choosing the bases of the approximation space is very
important. In this work, we present a suitable approximation of the solution in
terms of Lagrange polynomials, which leads to spectral accuracy or exponential
convergence. Note that we use the pseudo-spectral method only to discretize the
spatial variable. Also, we describe the implementation of the method for the two-
dimensional case.
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Suppose Ω ⊆ R2 is a bounded rectangle domain and np is a positive integer.
We consider Chebyshev points as nodal points

xij = (cos(iπ/np), cos(jπ/np)) , i, j = 0, 1, · · · , np. (11)

We consider the solutions of the KGZ equation (1) as a linear combination of
Lagrange polynomials as

u(x, t) =

np−1∑
i,j=1

uij(t)`ij(x), uij(t) := u(xij , t), (12)

v(x, t) =

np−1∑
i,j=1

vij(t)`ij(x), vij(t) := v(xij , t), (13)

where `ij are Lagrange polynomials, which are defined as

`ij(x, y) = `i(x)`j(y), i, j = 0, 1, · · · , np,

`i(x) =

np∏
k=0
k 6=i

(
x− xk
xi − xk

)
, i = 0, 1, . . . , np.

Note that `i(x) ∈ Pnp (polynomials of degree ≤ np) and satisfy in the Kronecker
Delta property

`i(xj) = δij , i, j = 0, 1, · · · , np.

We could find the second-order derivatives of `ij(·) concerning x and y in Cheby-
shev nodal points (11) as

∂2

∂x2
`ij(xrs) = `′′i (xr)`j(ys) =

[
D2
np

]
ri
δjs,

∂2

∂y2
`ij(xrs) = `i(xr)`

′′
j (ys) = δri

[
D2
np

]
js
,

where r, s = 0, 1, · · · , np. Applying relations (12)-(13) and (5)-(6) to the Equation
(1), we have

ν1µ0u
m
rs −

1

2

np−1∑
i,j=1

∆`ij(xrs)u
m
ij +

1

2
umrs = ν1µ0u

m−1
rs

+
1

2

np−1∑
i,j=1

∆`ij(xrs)u
m−1
ij − 1

2
um−1
rs − um−1

rs vm−1
rs − (|urs|2)m−1um−1

rs

+ ν1

m−1∑
i=1

(µm−i−1 − µm−i) δtui−1/2
rs + ν1µm−1φ1
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+ fm−1
rs , r, s = 0, 1, · · · , np, (14)

ν2µ̂0v
m
rs −

1

2

np−1∑
i,j=1

∆`ij(xrs)v
m
ij = ν2µ̂0v

m−1
rs +

1

2

np−1∑
i,j=1

∆`ij(xrs)v
m−1
ij

+

np−1∑
i,j=1

∆`ij(xrs)(|uij |2)m−1 + ν2

m−1∑
i=1

(µ̂m−i−1 − µ̂m−i) δtvi−1/2
rs

+ ν2µ̂m−1φ2 + gm−1
rs , r, s = 0, 1, · · · , np. (15)

where fmrs = f(xrs, t
m), gmrs = g(xrs, t

m), ν1 = 1
η2Γ(2−α) and ν2 = 1

η2Γ(2−β) are two
constant coefficients, and η = T/N is the time step. In addition,

∆`ij(xrs) =
[
D2
np

]
ri
δjs + δri

[
D2
np

]
js
, r, s = 0, 1, . . . , np, (16)

where D2
np is the second-order derivative matrix in Chebyshev points [22].

4. Stability
In this section, we present a theorem along with its proof to demonstrate that the
method described in Section 2 exhibits unconditional stability. To facilitate the
stability analysis, we introduce the following operators:

P
(
un−

1
2 , φ1

)
= µ0u

n−1/2 −
n−1∑
k=1

(µn−k−1 − µn−k)uk−1/2 − µn−1φ1, (17)

P̂
(
vn−

1
2 , φ2

)
= µ̂0v

n−1/2 −
n−1∑
k=1

(µ̂n−k−1 − µ̂n−k) vk−1/2 − µ̂n−1φ2. (18)

Using these operators, we can write the time discrete schemes (9)-(10) as
1

ηΓ(2−α)P
(
δtu

n− 1
2 , φ1

)
= ∆un−

1
2 − un− 1

2 − (uv)n−
1
2 − (|u|2u)n−

1
2 + fn−

1
2 ,

1
ηΓ(2−β) P̂

(
δtv

n− 1
2 , φ2

)
= ∆vn−

1
2 + ∆(|u|2)n−

1
2 + gn−

1
2 ,

un = vn = 0, x ∈ ∂Ω,

(19)
By using Lemma:

Lemma 4.1. ([23]). For any Φ = {Φ1,Φ2, · · · } and φ, we obtain

N∑
n=1

P (Φn, φ) Φn ≥
t1−αN

2
η

N∑
n=1

Φ2
n −

t2−αN

2(2− α)
φ2, ∀N = 1, 2, . . . .

we have the following theorem for the stability of the scheme.
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Theorem 4.2. Asumme un, vn ∈ H1
0 (Ω) and φ1 = ∂u

∂t |t=0, φ2 = ∂v
∂t |t=0. Then

the time discrete scheme (19) are unconditionally stable and we have the following
inequality

‖un‖L2(Ω) ≤ C1, ‖vn‖L2(Ω) ≤ C2,
where C1, C2 are positive constant.

Proof. By multiplying the two sides of the equations in (19) by δtun−
1
2 and δtvn−

1
2

respectively, and taking the integral over the Ω, we have

1

ηΓ(2− α)

{
µ0(δtu

n− 1
2 , δtu

n− 1
2 )−

n−1∑
k=1

(µn−k−1 − µn−k)(δtu
k− 1

2 , δtu
n− 1

2 )− µn−1(φ1, δtu
n− 1

2 )
}

= (∇2un−
1
2 , δtu

n− 1
2 )− ((un−

1
2 ), δtu

n− 1
2 )− ((uv)n−

1
2 , δtu

n− 1
2 )

− ((|u|2u)n−
1
2 , δtu

n− 1
2 ) + (fn−

1
2 , δtu

n− 1
2 ), (20)

1

ηΓ(2− β)

{
µ̂0(δtv

n− 1
2 , δtv

n− 1
2 )−

n−1∑
k=1

(µ̂n−k−1 − µ̂n−k)(δtv
k− 1

2 δtv
n− 1

2 )− µ̂n−1(φ2, δtv
n− 1

2 )
}

= (∇2vn−
1
2 , δtv

n− 1
2 ) + (∇2(|u|2)n−

1
2 , δtv

n− 1
2 ) + (gn−

1
2 , δtv

n− 1
2 ). (21)

Using the L2(Ω)-norm we obtain

1

ηΓ(2− α)

{
µ0‖δtun−

1
2 ‖2L2(Ω) −

n−1∑
k=1

(µn−k−1 − µn−k)‖δtuk−
1
2 ‖L2(Ω)‖δtun−

1
2 ‖L2(Ω)

− µn−1‖φ1‖L2(Ω)‖δtun−
1
2 ‖L2(Ω)

}
≤ −(∇un− 1

2 ,∇δtun−
1
2 )− (un−

1
2 , δtu

n− 1
2 )

− ((uv)n−
1
2 , δtu

n− 1
2 )− ((|u|2u)n−

1
2 , δtu

n− 1
2 ) + (fn−

1
2 , δtu

n− 1
2 ), (22)

1

ηΓ(2− β)

{
µ̂0‖δtvn−

1
2 ‖2L2(Ω) −

n−1∑
k=1

(µ̂n−k−1 − µ̂n−k)‖δtvk−
1
2 ‖L2(Ω)‖δtvn−

1
2 ‖L2(Ω)

− µ̂n−1‖φ2‖L2(Ω)‖δtvn−
1
2 ‖L2(Ω)

}
≤ −(∇vn− 1

2 ,∇δtvn−
1
2 )

+ (∇2(|u|2)n−
1
2 , δtv

n− 1
2 ) + (gn−

1
2 , δtv

n− 1
2 ). (23)

Now by considering relations

(un−
1
2 , δtu

n− 1
2 ) =

∫
Ω

un−
1
2 δtu

n− 1
2 dΩ =

∫
Ω

(
un + un−1

2
)(
un − un−1

η
)dΩ

=
1

2η

∫
Ω

(
(un)2 − (un−1)2

)
dΩ =

1

2η

[
‖un‖2L2(Ω) − ‖u

n−1‖2L2(Ω)

]
,

(24)

(∇un− 1
2 ,∇δtun−

1
2 ) =

∫
Ω

∇un− 1
2∇δtun−

1
2 dΩ
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=

∫
Ω

(
∇un +∇un−1

2
)(
∇un −∇un−1

η
)dΩ

=
1

2η

∫
Ω

(
(∇un)2 − (∇un−1)2

)
dΩ =

1

2η

[
‖∇un‖2L2(Ω) − ‖∇u

n−1‖2L2(Ω)

]
,(25)

and taking sum for n = 1, . . . ,m, we get the following inequalities

1

ηΓ(2− α)

m∑
n=1

{
µ0‖δtun−

1
2 ‖2L2(Ω) −

n−1∑
k=1

(µn−k−1 − µn−k)‖δtuk−
1
2 ‖L2(Ω)‖δtun−

1
2 ‖L2(Ω)

− µn−1‖φ1‖L2(Ω)‖δtun−
1
2 ‖L2(Ω)

}
+

1

2η

[
‖um‖2L2(Ω) − ‖u

0‖2L2(Ω)

]
+

1

2η

[
‖∇um‖2L2(Ω) − ‖∇u

0‖2L2(Ω)

]
≤ −

m∑
n=1

{
((uv)n−

1
2 , δtu

n− 1
2 ) + ((|u|2u)n−

1
2 , δtu

n− 1
2 )− (fn−

1
2 , δtu

n− 1
2 )
}
,

(26)

1

ηΓ(2− β)

m∑
n=1

{
µ̂0‖δtvn−

1
2 ‖2L2(Ω) −

n−1∑
k=1

(µ̂n−k−1 − µ̂n−k)‖δtvk−
1
2 ‖L2(Ω)‖δtvn−

1
2 ‖L2(Ω)

− µ̂n−1‖φ2‖L2(Ω)‖δtvn−
1
2 ‖L2(Ω)

}
+

1

2η

[
‖∇vm‖2L2(Ω) − ‖∇v

0‖2L2(Ω)

]
≤

m∑
n=1

{
(∇2(|u2|)n− 1

2 , δtv
n− 1

2 ) + (gn−
1
2 , δtv

n− 1
2 )
}
. (27)

Using Lemma 4.1, and the inequality

pq ≤ 1

2θ2
p2 +

θ2

2
q2, ∀θ 6= 0, (28)

we obtain

t1−αm

2Γ(2− α)

m∑
n=1

‖δtun−
1
2 ‖2L2(Ω) −

t2−αm

2(2− α)Γ(2− α)
‖φ1‖2L2(Ω)

+
1

2η

[
‖um‖2L2(Ω) − ‖u

0‖2L2(Ω)

]
+

1

2η

[
‖∇um‖2L2(Ω) − ‖∇u

0‖2L2(Ω)

]
≤

m∑
n=1

{
|((uv)n−

1
2 , δtu

n− 1
2 )|+ |((|u|2u)n−

1
2 , δtu

n− 1
2 )|+ |(fn− 1

2 , δtu
n− 1

2 )|
}
,

(29)

t1−βm

2Γ(2− β)

m∑
n=1

‖δtvn−
1
2 ‖2L2(Ω) −

t2−βm

2(2− β)Γ(2− β)
‖φ2‖2L2(Ω)
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+
1

2η

[
‖∇vm‖2L2(Ω) − ‖∇v

0‖2L2(Ω)

]
≤

m∑
n=1

{
(∇2(|u2|)n− 1

2 , δtv
n− 1

2 ) + (gn−
1
2 , δtv

n− 1
2 )
}
. (30)

Now by changing upper index of sigmas from m to n, and considering φ1, φ2 = 0
we have

‖un‖2L2(Ω) − ‖u
0‖2L2(Ω) + ‖∇un‖2L2(Ω) + ‖∇u0‖2L2(Ω)

≤ 12ηΓ(2− α)

t1−αn

n∑
j=1

{
‖((uv)j−

1
2 )‖2L2(Ω) + ‖((|u|2u)j−

1
2 )‖2L2(Ω) + ‖f j− 1

2 ‖2L2(Ω)

}
,

(31)

‖∇vn‖2L2(Ω)+‖∇v
0‖2L2(Ω) ≤

8ηΓ(2− β)

t1−βn

n∑
j=1

{
‖(∇2(|u|2)j−

1
2 )‖2L2(Ω) + ‖gj− 1

2 ‖2L2(Ω)

}
.

(32)
Using the Poincare inequality

‖un‖2L2(Ω) ≤ CΩ‖∇un‖2L2(Ω),

‖vn‖2L2(Ω) ≤ ĈΩ‖∇vn‖2L2(Ω),

we can rewrite the Equations (31)-(32) as

(1 + CΩ)‖un‖2L2(Ω) ≤ CΩ

(
‖u0‖2L2(Ω) + ‖∇u0‖2L2(Ω) +

12ηΓ(2− α)

t1−αn

n∑
j=1

{
‖((uv)j−

1
2 )‖2L2(Ω)

+ ‖((|u|2u)j−
1
2 )‖2L2(Ω) + ‖f j− 1

2 ‖2L2(Ω)

})
, (33)

‖vn‖2L2(Ω) ≤ ĈΩ

(
‖∇v0‖2L2(Ω) +

8ηΓ(2− β)

t1−βn

n∑
j=1

{
‖(∇2(|u|2)j−

1
2 )‖2L2(Ω) + ‖gj− 1

2 ‖2L2(Ω)

})
.

(34)

By taking the maximum from the both sides of the equations, we get

‖un‖2L2(Ω) ≤ ‖u
0‖2L2(Ω) + ‖∇u0‖2L2(Ω)

+
12nηΓ(2− α)

t1−αn

max
1≤j≤n

{
‖((uv)j−

1
2 )‖2L2(Ω) + ‖((|u|2u)j−

1
2 )‖2L2(Ω),

+ ‖f j− 1
2 ‖2L2(Ω)

}
, (35)
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‖vn‖2L2(Ω) ≤ ĈΩ

(
‖∇v0‖2L2(Ω) +

8nηΓ(2− β)

t1−βn

max
1≤j≤n

{
‖(∇2(|u|2)j−

1
2 )‖2L2(Ω) + ‖gj− 1

2 ‖2L2(Ω)

})
.

(36)

Now, by simplifying we have

‖un‖L2(Ω) ≤ ‖u0‖L2(Ω) + ‖∇u0‖2L2(Ω)

+M max
1≤j≤n

{
‖((uv)j−

1
2 )‖L2(Ω) + ‖((|u|2u)j−

1
2 )‖L2(Ω) + ‖f j− 1

2 ‖L2(Ω)

}
,

‖vn‖L2(Ω) ≤ ĈΩ‖∇v0‖2L2(Ω) +K max
1≤j≤n

{
‖(∇2(|u|2)j−

1
2 )‖L2(Ω) + ‖gj− 1

2 ‖L2(Ω)

}
,

where

M =

(
12 T Γ(2− α)

t1−αn

)1/2

, K =

(
ĈΩ

8 T Γ(2− β)

t1−βn

)1/2

.

where T = nη denotes the final time, which is a constant. This completes the
proof.

5. Numerical outcomes
Numerical investigations are provided in this section to validate and assess the
performance of the method outlined in the preceding sections. The method has
been applied to three distinct test problems across two spatial dimensions. A de-
tailed examination of the results obtained for each example is presented. Notably,
all algorithms have been implemented using MATLAB software.

To assess the precision of the numerical outcomes, we employ L2 and L∞ error
norms. Additionally, for reporting the numerical convergence rate, we utilize the
following formula:

c− order =
log( e(i−1)

e(i) )

log 2
,

where e(i) represents the corresponding error of the numerical result for η(i).

Test problem 1
Consider the nonlinear coupled KGZ equation (1) on Ω = [0, 1]2 with exact solu-
tions

u(x, y, t) = t2 sin(πx) sin(πy), v(x, y, t) = t2 sin(2πx) sin(2πy). (37)

Therefore, the right-hand side functions f and g can be obtained from these solu-
tions as

f(x, y, t) =

(
Γ(3)t2−α

Γ(3− α)
+ 2π2t2 + t2 + t4 sin(2πx) sin(2πy)

)
sin(πx) sin(πy),
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Table 1: The L∞ and L2 errors and c-orders for u at T = 1 (Test problem 1).
α = 1.8, β = 1.2 α = 1.5, β = 1.6

np η L∞-error L2 error c-order L∞error L2error c-order CPU-Time
2 1/8 1.58e− 01 1.58e− 01 − 1.67e− 01 1.67e− 01 − 0.04
4 1/64 2.00e− 03 2.36e− 03 6.30 2.20e− 03 2.61e− 03 6.25 0.06
6 1/216 2.54e− 04 4.93e− 04 2.98 1.60e− 04 3.08e− 04 3.78 0.40
8 1/512 9.78e− 05 2.39e− 04 1.38 6.44e− 05 1.53e− 04 1.31 2.83
10 1/1000 4.71e− 05 1.43e− 04 1.05 3.27e− 05 9.73e− 05 0.98 10.0
12 1/1728 2.61e− 05 9.50e− 05 0.85 1.89e− 05 6.75e− 05 0.79 67.2
14 1/2744 1.59e− 05 6.73e− 05 0.72 1.19e− 05 4.96e− 05 0.67 241.4

Table 2: The L∞ and L2 errors and c-orders for v at T = 1 (Test problem 1).
α = 1.8, β = 1.2 α = 1.5, β = 1.6

np η L∞-error L2 error c-order L∞error L2error c-order CPU-Time
2 1/8 1.07e+ 00 1.07e+ 00 − 8.88e− 01 8.88e− 01 − 0.04
4 1/64 1.36e− 01 2.68e− 01 2.97 1.18e− 01 2.56e− 01 2.92 0.06
6 1/216 1.10e− 02 1.84e− 02 3.63 1.01e− 02 1.76e− 02 3.54 0.40
8 1/512 3.64e− 03 6.95e− 03 1.59 3.32e− 03 6.21e− 03 1.61 2.83
10 1/1000 1.83e− 03 4.40e− 03 0.99 1.67e− 03 3.95e− 03 0.99 10.0
12 1/1728 1.05e− 03 3.05e− 03 0.80 9.66e− 04 2.74e− 03 0.79 67.2
14 1/2744 6.63e− 04 2.24e− 03 0.67 6.09e− 04 2.02e− 03 0.67 241.4

g(x, y, t) =

(
Γ(3)t2−β

Γ(3− β)
+ 4π2t2

)
sin(2πx) sin(2πy)− 2π2t4 sin2(πy)

(
cos2(πx)

− sin2(πx)
)
− 2π2t4 sin2(πx)

(
cos2(πy)− sin2(πy)

)
.

In Tables 1 and 2, the L∞ and L2 errors, along with the order of numerical
convergence, are reported for u and v at T = 1 in two states (α = 1.8, β = 1.2,
and α = 1.5, β = 1.6). Additionally, the times used to run the relevant programs
are given in the last column of these tables. As can be seen, the accuracy of
the results improves as np increases and η decreases simultaneously. It should
be mentioned that very good results have been obtained with relatively small np.
Table 3 reports the L∞ and L2 errors along with the order of convergence for a
fixed time step. Table 4 presents the same values for a fixed np across varying time
steps. The results from these two tables demonstrate the high order of convergence
of the method with respect to both space and time.

To better assess the accuracy of the introduced method, Figures 1 and 2 plot
the maximum errors for different values of α with constant β and vice versa, both
for u and v. These figures clearly demonstrate the exponential reduction of errors,
which is a characteristic of spectral methods. Finally, in Figure 3, the graph of
exact and numerical solutions is drawn together with α = 1.3, β = 1.2 and np = 14
at T = 1, showing their good agreement.



376 S. Mirzaei et al. /An Unconditionally Stable Spectral-Finite...

Table 3: The L∞ and L2 errors and c-orders for α = 1.5, β = 1.6 at T = 1 with
η = 1/216 (Test problem 1).

u v
np L∞-error L2 error c-order L∞error L2error c-order
2 1.69e− 01 1.69e− 01 − 6.65e− 01 6.65e− 01 −
4 2.55e− 03 3.01e− 03 6.05 1.16e− 01 2.46e− 01 2.51
6 1.59e− 04 3.07e− 04 4.00 1.01e− 02 1.75e− 02 3.52
8 1.53e− 04 3.65e− 04 0.05 7.77e− 03 1.46e− 02 0.38
10 1.52e− 04 4.56e− 04 0.004 7.71e− 03 1.82e− 02 0.01

Table 4: The L∞ and L2 errors and c-orders for α = 1.5, β = 1.6 at T = 1 with
np = 8 (Test problem 1).

u v
η L∞-error L2 error c-order L∞error L2error c-order

1/4 1.84e− 02 5.04e− 02 − 3.39e− 01 6.46e− 01 −
1/16 2.52e− 03 6.34e− 03 2.86 1.00e− 01 1.89e− 01 1.76
1/64 5.34e− 04 1.29e− 03 2.24 2.58e− 02 4.89e− 02 1.94
1/256 1.29e− 04 3.07e− 04 2.05 6.57e− 03 1.23e− 02 1.97
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Figure 1: The L∞ errors of u (left) and v (right) as functions of np and η = 1/n3
p for

β = 1.2 and different values of α at T = 1 (Test problem 1).
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Table 5: The L∞ and L2 errors and c-orders for u at T = 1 (Test problem 2).
α = 1.8, β = 1.6 α = 1.5, β = 1.8

np η L∞-error L2 error c-order L∞error L2error c-order CPU-Time
2 1/8 9.30e− 03 9.29e− 03 − 1.83e− 02 1.83e− 02 − 0.03
4 1/64 2.03e− 02 2.05e− 02 1.12 2.57e− 02 2.62e− 02 −0.49 0.06
6 1/216 7.06e− 04 1.51e− 03 4.85 8.62e− 04 1.66e− 03 4.90 0.34
8 1/512 1.73e− 04 3.46e− 04 2.02 1.91e− 04 3.72e− 04 2.17 1.73
10 1/1000 1.13e− 04 2.24e− 04 0.61 1.28e− 04 2.52e− 04 0.58 7.61
12 1/1728 6.55e− 05 1.52e− 04 0.79 7.49e− 05 1.76e− 04 0.76 36.1
14 1/2744 4.08e− 05 1.09e− 04 0.68 4.73e− 05 1.30e− 04 0.66 107.2

Test problem 2

As another example, consider the nonlinear coupled KGZ equation (1) on domain
Ω = [−1, 1]2 with the following exact solutions

u(x, y, t) = t2 cos(
π

2
x) cos(

π

2
y), v(x, y, t) = t2 cos(

3π

2
x) cos(

3π

2
y). (38)

As before, the right-hand side functions f and g can be obtained by inserting these
solutions into Equation (1) as

f(x, y, t) =

(
Γ(3)t2−α

Γ(3− α)
+
π2

2
t2 + t2 + t4 cos(

3π

2
x) cos(

3π

2
y)

)
cos(

π

2
x) cos(

π

2
y)

+ t6
(

cos3(
π

2
x) cos3(

π

2
y)
)
,

g(x, y, t) =

(
Γ(3)t2−β

Γ(3− β)
+

9

2
π2t2

)
cos(

3π

2
x) cos(

3π

2
y)

+ πt4 cos2(
π

2
y)

(
−π
2

sin2(
π

2
x) +

π

2
cos2(

π

2
x)

)
+ πt4 cos2(

π

2
x)

(
−π
2

sin2(
π

2
y) +

π

2
cos2(

π

2
y)

)
.

Similar to the previous section, in Tables 5 and 6, the L∞ and L2 errors are re-
ported along with the order of numerical convergence for u and v at T = 1 in two
states (α = 1.8, β = 1.6, and α = 1.5, β = 1.8). The corresponding execution
times for the relevant programs are also provided. Once again, the results demon-
strate the method’s good accuracy. Additionally, Figures 4 and 5 depict maximum
errors for various α’s with fixed β and vice versa, both for u and v. These graphs
clearly illustrate the exponential reduction of errors, a characteristic of spectral
methods. Furthermore, Figure 6 displays the graph of exact and numerical solu-
tions alongside α = 1.3, β = 1.2 at T = 1, highlighting their strong agreement.
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Table 6: The L∞ and L2 errors and c-orders for v at T = 1 (Test problem 2).
α = 1.8, β = 1.6 α = 1.5, β = 1.8

np η L∞-error L2 error c-order L∞error L2error c-order CPU-Time
2 1/8 4.97e+ 00 4.97e+ 00 − 4.31e+ 00 4.31e+ 00 − 0.03
4 1/64 9.86e− 01 1.03e+ 00 2.33 9.11e− 01 9.92e− 01 2.24 0.06
6 1/216 7.15e− 02 1.72e− 01 3.78 7.15e− 02 1.73e− 01 3.67 0.34
8 1/512 5.47e− 03 9.57e− 03 3.70 5.36e− 03 9.50e− 03 3.73 1.73
10 1/1000 9.71e− 04 1.90e− 03 2.49 9.06e− 04 1.71e− 03 2.56 7.61
12 1/1728 4.87e− 04 1.30e− 03 0.99 4.45e− 04 1.16e− 03 1.02 36.1
14 1/2744 3.06e− 04 9.63e− 04 0.67 2.78e− 04 8.54e− 04 0.68 107.2
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Figure 4: The L∞ errors of u (left) and v (right) as functions of np and η = 1/n3
p for

β = 1.6 and different values of α at T = 1 (Test problem 2).
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Figure 6: Surfaces for the numerical and exact solutions of u (left) and v (right) for
α = 1.1, β = 1.6 and np = 14 at T = 1 (Test problem 2).

Test problem 3
Now consider the nonlinear coupled KGZ equation (1) on Ω = [0, 1]2 with exact
solutions

u(x, y, t) = et sin(πx) sin(πy),

v(x, y, t) = et sin(2πx) sin(2πy).

The right-hand side functions f and g can be obtained from these solutions as

f(x, y, t) =
(
t2−αE1,3−α(t) + 2π2et + et

)
sin(πx) sin(πy)

+ e2t sin(πx) sin(πy)
(
sin(2πx) sin(2πy) + et sin2(πx) sin2(πy)

)
,

g(x, y, t) =
(
t2−βE1,3−β(t) + 8π2et

)
sin(2πx) sin(2πy)

− 2π2e2t
(
cos(2πx) sin2(πy) + cos(2πy) sin2(πx)

)
.

where Eα,β is the two-parameter Mittag-Leffler function, defined as follows:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (α > 0, β > 0).

Similar to the previous test problems, Tables 7 and 8 report the L∞ and L2

errors, along with the numerical convergence order for u and v at T = 1, under
two parameter sets: α = 1.8, β = 1.2, and α = 1.5, β = 1.6. The corresponding
execution times of the respective programs are also provided. Once again, the
results demonstrate the method’s strong accuracy.

However, in this case, due to the exponential growth of the exact solutions and
the presence of the Mittag-Leffler function on the right-hand side, which involves
an infinite summation and requires approximation in its computation, the resulting
errors do not exhibit the exponential decay seen in the previous examples.
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Table 7: The L∞ and L2 errors and c-orders for u at T = 1 (Test problem 3).
α = 1.8, β = 1.2 α = 1.5, β = 1.6

np η L∞-error L2 error c-order L∞error L2error c-order CPU-Time
2 1/8 2.09e− 01 2.09e− 01 − 2.11e− 01 2.11e− 01 − 0.03
4 1/64 1.10e− 02 1.40e− 02 4.24 6.12e− 02 8.07e− 02 1.78 0.06
8 1/512 4.05e− 02 1.18e− 01 1.87 1.81e− 02 5.43e− 02 1.75 1.80
10 1/1000 4.04e− 02 1.47e− 01 0.004 1.84e− 02 6.85e− 02 0.01 7.17
12 1/1728 4.03e− 02 1.76e− 01 0.002 1.85e− 02 8.26e− 02 0.007 23.4

Table 8: The L∞ and L2 errors and c-orders for v at T = 1 (Test problem 3).
α = 1.8, β = 1.2 α = 1.5, β = 1.6

np η L∞-error L2 error c-order L∞error L2error c-order CPU-Time
2 1/8 1.03e+ 01 1.03e+ 01 − 1.0144e+ 01 1.0144e+ 01 − 0.03
4 1/64 9.81e− 01 1.26e+ 00 3.40 1.2405e+ 00 1.5104e+ 00 3.03 0.07
8 1/512 2.76e− 01 6.00e− 01 1.82 7.1694e− 02 1.3046e− 01 4.11 1.93
10 1/1000 2.82e− 01 7.66e− 01 0.03 6.5738e− 02 1.4958e− 01 0.12 7.71
12 1/1728 2.85e− 01 9.27e− 01 0.01 6.3338e− 02 1.7261e− 01 0.05 39.8

Additionally, Figure 7 displays the exact and numerical solutions for α = 1.3,
β = 1.2 at T = 1 at T = 1, highlighting their close agreement.

6. Conclusions

In this article, we utilized the pseudo-spectral method based on Lagrange poly-
nomials to numerically solve the nonlinear coupled KGZ equation. The proposed
method employs the finite difference technique to discretize the time variable. Ad-
ditionally, we demonstrated the unconditional stability of this method. The results
from three numerical examples in the previous section showcase the exponential
accuracy of the method for various α’s and β’s in the interval (1, 2), as presented
in different tables and figures. Consequently, based on the obtained results, this
method can be effectively employed to numerically solve various types of fractional
differential systems.
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