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Abstract

SARS-CoV-2 (COVID-19), a member of the Betacoronavirus family, was
declared a global pandemic in 2020. This study develops a mathematical
model to investigate COVID-19 transmission in a heterogeneous popula-
tion in South Africa, incorporating environmental transmission and non-
pharmaceutical interventions (NPIs) such as mask efficacy. We analyze qual-
itative properties, including the stability of disease-free and endemic equi-
libria relative to the basic reproduction number R0. The analysis reveals
a transcritical bifurcation at R0 = 1, indicating that simply reducing R0

below one is insufficient for disease elimination. This underscores the need
for complementary measures, such as quarantine. Simulations highlight the
roles of symptomatic and asymptomatic infections, with reduced mask com-
pliance promoting the persistence of the endemic state. The study concludes
that quarantine remains a vital intervention for controlling transmission.
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1. Introduction

On December 31, 2019, the World Health Organization (WHO) reported a cluster
of Pneumonia cases in Wuhan, China, caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), which was later identified as the agent
behind Coronavirus disease 2019 (COVID-19). The virus quickly spread glob-
ally, prompting the WHO to declare it a pandemic on March 11, 2020 [1]. In
the absence of an effective antiviral treatment or vaccine, many countries imple-
mented lockdowns, border closures, and activity restrictions to curb transmission
[2]. COVID-19 primarily spreads through respiratory droplets, with symptoms
appearing 2–14 days post-exposure, ranging from mild (fever, cough, loss of taste
or smell) to severe, requiring hospitalization. Preventive measures include social
distancing, handwashing, and wearing face masks [3].

In the absence of vaccines or effective therapeutics, non-pharmacological in-
terventions such as social distancing, contact tracing, and awareness campaigns
remain crucial in mitigating the spread of COVID-19. Mathematical modelling
has been extensively employed to predict transmission dynamics and evaluate in-
terventions. For instance, compartmental models have been developed to capture
provincial and national trends in India (see e.g., [4–6]). Other studies empha-
size the influence of vaccination coverage and environmental contamination on
outbreak dynamics [7, 8], while media-driven awareness has been shown to sig-
nificantly reduce transmission [9, 10]. Beyond COVID-19, modelling approaches
for related infectious diseases highlight the broader methodological relevance of
optimal controls for dengue [11]. Collectively, these studies underscore the in-
dispensable role of mathematical models in elucidating transmission dynamics of
COVID-19, guiding intervention strategies, and shaping effective public health
policy during pandemics.

Mathematical models have been widely used to study the transmission dynam-
ics and control measures of COVID-19. The SEIR (Susceptible-Exposed-Infected-
Recovered) model has been adapted to include factors such as hospitalization,
quarantine, and environmental influences [12]. Such models have incorporated
seasonality, stochastic infection parameters, and nonlinear dynamics, including
chaotic behaviour. A deterministic SEIAQHRM (Susceptible-Exposed-Infected-
Asymptomatic-Quarantined-Hospitalised-Recovered) model was developed using a
fractal-fractional operator to estimate the reproduction number and transmission
rate [13]. However, this model did not consider masked and unmasked individuals.
A new SMUEIHR (Susceptible-Masked-Unmasked-Exposed-Infected-Hospitalised-
Recovered) model was introduced to analyze the effects of mask usage and hos-
pitalization in reducing transmission rates [14]. However, it did not differentiate
between symptomatic and asymptomatic individuals.

In this study, we develop a refined mathematical model to investigate the trans-
mission dynamics of COVID-19 in South Africa, incorporating both symptomatic
and asymptomatic infectious groups. The model builds upon and extends existing
frameworks by introducing a hybrid structure with improved parameter formu-



Mathematics Interdisciplinary Research 10 (4) (2025) 447− 475 449

lation to more accurately reflect real-world transmission patterns. South Africa,
with a population exceeding 59 million, reported its first COVID-19 case on 5
March 2020, and declared a national state of disaster on March 15, 2020 [15]. In
response, the government implemented strict Non-Pharmaceutical Interventions
(NPIs), including nationwide lockdowns, travel restrictions, and school closures,
with measures gradually relaxed in line with infection trends [16]. By Novem-
ber 2020, the country had the highest number of confirmed COVID-19 cases in
Africa and ranked fifteenth globally, despite a comparatively low mortality rate
[17]. Our model specifically evaluates the effectiveness of key NPIs—particularly
mask-wearing and quarantine in mitigating disease spread. The findings can con-
tribute to a broader understanding of public health strategies and their role in
reducing transmission and improving health outcomes.

2. Model formulation

We propose a mathematical model to investigate the dynamics of COVID-19 in-
fection, incorporating preventive measures such as mask-wearing and quarantine.
The total population at time t, denoted by N (t), is divided into eight compart-
ments: susceptible S(t), unmasked U(t), maskedM(t), exposed E(t), symptomatic
infected Is(t), asymptomatic infected Ia(t), quarantined symptomatic Qs(t), and
recovered R(t). The model, referred to as (SUMEIsIaQsR), captures the trans-
mission dynamics by classifying individuals based on their infection status and
behaviour.

The susceptible class S includes individuals at risk of infection. The masked
class M represents those who wear masks, which reduce transmission, while the
unmasked class U includes individuals who are not wearing masks, increasing the
risk of infection. The exposed class E consists of individuals who are infected
but not yet symptomatic. The symptomatic infected class Is includes individuals
with higher viral loads, contributing to increased transmission. The quarantined
symptomatic class Qs accounts for isolated symptomatic individuals, helping with
contact tracing and limiting spread. The infected asymptomatic class with Ia
represents individuals who are infected but show no symptoms, acting as silent
transmitters. The recovered class R includes people who have recovered from
infection in all infected categories.

Several key parameters govern the dynamics of the disease: the population
recruitment rate (π), the transition rate between masked and unmasked individu-
als (α), and the proportion of individuals who opt to remain unmasked (ρ). The
disease transmission rate is represented by (β), while (τ) quantifies the efficacy
of masks in reducing transmission. The relative infectivity of asymptomatic indi-
viduals compared to symptomatic individuals is given by (η), and the incubation
rate (ε) dictates the progression from exposed to infected status. The proportion
of symptomatic cases is indicated by (κ), with recovery rates specified for asymp-
tomatic (γ1), quarantined symptomatic (γ2), and symptomatic individuals (γ3).
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The general recovery rate for symptomatic individuals is denoted by (ξ), while the
disease-induced death rate is (σ), and the natural death rate is (µ).

The force of infection is expressed as:

ψ = β(Ia + ηIs), (1)

which reflects the combined contributions of asymptomatic and symptomatic in-
fected individuals to disease transmission. We assume η ≥ 1 to indicate that
symptomatic individuals are at least as infectious as asymptomatic ones. The ef-
fectiveness of the masks is measured by τ , where 0 ≤ τ ≤ 1. τ = 0, indicates that
masks are ineffective, and τ = 1, indicates that the masks are fully effective in
preventing disease transmission.

Based on the model diagram, a set of eight non-linear ordinary differential
equations representing COVID-19 dynamics in eight compartments of the human
population is constructed as follows:

dS

dt
= π −Q1S,

dU

dt
= αρS − (µ+ ψ)U,

dM

dt
= α(1− ρ)S − (µ+ (1− τ)ψ)M,

dE

dt
= ψU + (1− τ)ψM −Q2E,

dIs
dt

= εκE −Q3Is,

dIa
dt

= ε(1− κ)E −Q4Ia,

dQs
dt

= ξIs −Q5Qs,

dR

dt
= γ1Ia + γ2Qs + γ3Is − µR,



(2)

where
Q1 = (µ+ α), Q2 = (µ+ ε), Q3 = (µ+ ξ + γ3),

Q4 = (µ+ γ1), Q5 = (µ+ σ + γ2).

The model is supplemented by the following initial values:{
S(0) = S0 > 0, U(0) = U0 ≥ 0,M(0) = M0 ≥ 0, E(0) = E0 ≥ 0,

Is(0) = Is0 ≥ 0, Ia(0) = Ia0 ≥ 0, Qs(0) = Qs0 ≥ 0, R(0) = R0 ≥ 0.
(3)
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For all t ≥ 0, we also set the time t = 0 to be the time when COVID-19 started in
South Africa. Assume that the initial susceptible population was strictly greater
than zero and that no individuals were infected at the onset of the pandemic. The
flow chart diagram of the model for the transmission of COVID-19 dynamics in
South Africa is designed as Figure 1.

Figure 1: A model diagram for COVID-19 in the presence of mask use and quar-
antine.

3. Model properties

Well-posedness of the model
In this section, we establish the well-posedness of the model by proving that the
basic properties of the model (2), including positivity and boundedness of the
solutions, within a biologically feasible region ΩR for all t ≥ 0, ensuring the epi-
demiological relevance of the model.

Positivity of model solutions

The population model is well-posed, as its solutions remain non-negative for all
t ≥ 0, ensuring the biological feasibility of the system. Specifically, for any non-
negative initial conditions, all state variables of system (2) remain positive over
time, as formally established in the subsequent theorem.

Theorem 3.1. The solutions of the system (2) remain non-negative for the given
initial conditions (3) in the region ΩR for all t ≥ 0.

Proof. To prove the above theorem, all compartmental variables forming system
(2) must be non-negative for all t ≥ 0. Given that the initial conditions are all
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non-negative, considering the susceptible class from system (2)

dS(t)

dt
= π −Q1S(t) ≥ −Q1S(t) ≥ 0,

S(t) ≥ S0 e
−Q1t > 0, ∀ t > 0.

Since the exponential function is always positive and S(0) > 0, the solution S(t)
is guaranteed to remain positive for all t > 0. If t→∞ then S(t) ≥ 0. Similarly,
from third equation of the system (2), we have

dM

dt
= α(1− ρ)S − (µ+ (1− τ)ψ)M ≥ −(µ+ (1− τ)ψ)M ≥ 0.

Let t1 = Sup {t > 0 : t ∈ [0, t]}, such that t1 is non-negative, after simplification
we get

M(t) ≥M0 e

(
−
∫ t1
0 (1−τ)ψdt1−µt

)
≥ 0.

If t becomes very large, then M(t) ≥ 0. Similarly, it can be shown that all other
variables are non-negative thus, we can say that all system solutions (2) are non-
negative for any given non-negative initial conditions for all time t ≥ 0.

Boundedness of solutions

The model system (2) will be analyzed within the following region:

ΩR =

{
X ∈ ΩR : 0 ≤ N (t) ≤ π

µ

}
,

with
{X = {S(t), U(t),M(t), E(t), Is(t), Ia(t), Qs(t), R(t)}} . (4)

The region remains positively invariant within the model system. We have the
following theorem to show that these solutions are uniformly unique, bounded,
and invariant in the positive feasible region ΩR.

Theorem 3.2. The solution set (4) of the system (2) with the initial conditions
(3) is confined in the positive feasible region ΩR.

Proof. From the model system (2), we have:

dN
dt
≤ π − µN (t), ∀ t ≥ 0. (5)

Now solving Equation (5) and applying initial conditions, we get:

N (t) ≤ π

µ0
−
(
π

µ
−N0

)
e−µt. (6)
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If t→∞ and N0 <
π

µ
, then upper bound of N (t) is π

µ0
. If t→∞ and if N0 ≥

π

µ
then, N (t) decreases and approaches ΩR asymptotically. From (6) each state space
variable of the system (2) is less than or equal to π

µ0
, so the solution set of system

(2) is bounded. Thus the system (2) is positively invariant in a closed feasible
region ΩR and all solutions started in this region remain in the ΩR means,

ΩR =

{
X ∈ ΩR : 0 ≤ N (t) ≤ π

µ

}
,

is positively invariant.

4. Model analysis

In this section, the disease-free equilibrium point, the basic reproductive number,
and the endemic equilibrium point are calculated. Stability analysis is established.

Equilibria analysis

The model system (2) has two biologically feasible equilibrium points, namely,

Disease-free equilibrium point E∗0 = (S∗0 , U
∗
0 , M

∗
0 , E

∗
0 , I

∗
s0, I

∗
a0, Q

∗
s0, R

∗
0).

Endemic equilibrium point E∗∗ = (S∗∗, U∗∗,M∗∗, E∗∗, I∗∗s , I∗∗a , Q∗∗s , R
∗∗).

Disease-free equilibrium point

Disease-free equilibrium is the state where the population is entirely free of disease.
The disease-free equilibrium of a system is locally asymptotically stable if R0 < 1
and unstable when R0 > 1. Let E∗0 be the disease-free equilibrium point, then for
the system (2). We obtained the disease-free equilibrium by setting the right-hand
side equal to zero. We get eight homogeneous equations.

π −Q1S
∗ = 0,

αρ∗uS
∗ − (µ+ ψ∗)U∗ = 0,

α(1− ρ∗u)S∗ − (µ+ (1− τ)ψ∗)M∗ = 0,
ψ∗U∗ + (1− τ)ψ∗M∗ −Q2E

∗ = 0,
εκE∗ −Q3I

∗
s = 0,

ε(1− κ)E∗ −Q4I
∗
a = 0,

ξI∗s −Q5Q
∗
s = 0,

γ1I
∗
a + γ2Q

∗
s + γ3I

∗
s − µR∗ = 0.


(7)

From the above system (7), we get the following:
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S∗ =
π

Q1
, U∗ =

απρ

Q1(µ+ I∗sφ5)
, M∗ =

απ(1− ρ)

Q1(µ+ (1− τ)I∗sφ5)
,

E∗ = φ2I
∗
s , I∗a = φ3I

∗
s , Q∗s = φ1I

∗
s , R∗ = φ4I

∗
s , ψ∗ = φ5I

∗
s .

(8)

with

φ1 =
ξ

Q5
, φ2 =

Q3

εκ
, φ3 =

ε(1− κ)φ2
Q4

, φ4 =
γ3 + γ2φ1 + γ1φ3

µ
, φ5 = β(φ3+η).

(9)
Using (8) and (9) in the system (7) we get the following:

I∗s

(
−Q2φ2 +

παφ5 (µ+ µ(−1 + ρ)τ + (1− τ)Isφ5)

Q1 (µ+ Isφ5) (µ+ (1− τ)Isφ5)

)
= 0. (10)

At disease-free equilibrium I∗s = 0, then from (8), we get E∗ = I∗a = Q∗s = R∗ = 0,
which gives

S∗0 =
π

Q1
, U∗0 =

αρπ

µQ1
, M∗0 =

α(1− ρ)π

µQ1
.

Thus, the disease-free equilibrium point is summarized below E∗0 , is given by(
S∗0 , U

∗
0 , M

∗
0 , E

∗
0 , I

∗
s0, I

∗
a0, Q

∗
s0, R

∗
0

)
=
( π

Q1
,
απρ

µQ1
,
α(1− ρ)π

µQ1
, 0, 0, 0, 0, 0

)
.

(11)

Basic reproduction number
In epidemiological models, the basic reproduction number, denoted as (R0), rep-
resents the average number of secondary infections caused by a single infectious
individual introduced into a fully susceptible population [18]. Using the next-
generation method for the model system (2), the basic reproduction number,
R0 = R(τ), is determined as the dominant eigenvalue of the next-generation ma-
trix, K = FV −1. Here, F represents the rate of new infections, while V denotes
the rate of transfer of individuals into or out of exposed and infectious compart-
ments [19]. We write new infection terms as F = F (x) and all other transfer terms
as V = V (x). At the disease-free equilibrium (DFE), we have

U∗0 =
αρ∗π

µQ1
, M∗0 =

α(1− ρ∗)π
µQ1

.

So for construction of F and V we have the following:

dE

dt
= ψU + (1− τ)ψM −Q2E,

dIs
dt

= εκE −Q3Is,
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dIa
dt

= ε(1− κ)E −Q4Ia,

dQs
dt

= ξIs −Q5Qs.

Let us define L = U∗0 + (1− τ), M∗0 = απQ00

µQ1
, where; Q00 = (1− τ(1− ρ)). Now

jacobians at DFE with state order E, Is, Ia, Qs are given:

F =



0 βηL βL 0

0 0 0 0

0 0 0 0

0 0 0 0


, V =


Q2 0 0 0
−εκ Q3 0 0

−ε(1− κ) 0 Q4 0
0 −ξ 0 Q5

 .

The reproductive number for COVID-19 with non-pharmaceutical interventions
such as masks is given as the spectral radius of the matrix K = FV −1. The
largest eigenvalue of K, after some algebraic manipulation, can be written as a
sum of two sub-reproduction numbers so that

R0 =
β εL
Q2

(
(1− κ)

Q4
+
η κ

Q3

)
=
β ε

Q2

απQ00

Q1µ

(
(1− κ)

Q4
+
η κ

Q3

)
.

Q00 = (1 − τ(1 − ρ)) = ρ + (1 − τ)(1 − ρ), represents the effective fraction of
susceptibles contributing to transmission. If τ = 1, then masks provide perfect
protection, and if ρ = 1, means everyone is unmasked. Which shows explicitly
how mask coverage (1 − ρ) and mask efficacy (τ) reduce the basic reproduction
number.
Hence,

R0 = Ra +Rs,

with,

Ra =
αβπε(1− κ)

(
ρ+ (1− τ)(1− ρ)

)
µQ1Q2Q4

, Rs =
αβπεηκ(

(
ρ+ (1− τ)(1− ρ)

)
µQ1Q2Q3

.

(12)
The expression Ra represents the contributions of the asymptomatic individuals,
and the expressionRs represents the contributions of the symptomatic individuals.

Endemic equilibrium

After some algebraic manipulation, the endemic equilibrium (EE) E∗∗ is given by

E∗∗ = (S∗∗, U∗∗,M∗∗, E∗∗, I∗∗s , I∗∗a , Q∗∗s , R
∗∗) .



456 F. Naz et al. /Modelling COVID-19 Infection Dynamics in the...

Let
ψ∗∗ = β

(
I∗∗a + ηI∗∗s

)
,

denote the endemic force of infection. Let

L =
ηκ

Q3
+

1− κ
Q4

, Q00 = ρ+ (1− τ)(1− ρ).

From the steady-state relations and the definition of R0

R0 =
αβπε Q00 L
µQ1Q2

.

Let

∆ = ρ+ (1− τ)2(1− ρ), ψ∗∗ =
µQ00

∆R0

(
R0 − 1

)
, (R0 ≥ 1).

We obtain the endemic state valid for R0 ≥ 1 as follows:

S∗∗ =
π

Q1
, U∗∗ =

απρR0 ∆

µQ1

(
R0 ∆ +Q00 (R0 − 1)

) ,
M∗∗ =

απ(1− ρ)R0 ∆

µQ1

(
R0 ∆ + (1− τ)Q00 (R0 − 1)

) , E∗∗ =
µQ00

(
R0 − 1

)
β εL∆R0

,

I∗∗s =
µκQ00

(
R0 − 1

)
βQ3 L∆R0

, I∗∗a =
µ (1− κ)Q00

(
R0 − 1

)
βQ4 L∆R0

,

Q∗∗s =
ξ κµQ00 (R0 − 1)

βQ3Q5 L∆R0
, R∗∗ =

Q00H (R0 − 1)

β L∆R0
,

with
H =

γ1(1− κ)Q3Q5 + γ3κQ4Q5 + γ2ξκQ4

Q3Q4Q5
.

Stability analysis
In this section, we analyze the stability properties of the model. The local stabil-
ity of the disease-free equilibrium (DFE) is investigated using the Routh–Hurwitz
criteria, while the local stability of the endemic equilibrium is examined with the
center manifold theory. For the global stability of the endemic equilibrium, an
appropriately constructed Lyapunov function is employed. Furthermore, bifurca-
tion analysis is carried out to determine the conditions under which qualitative
changes in the system occur. In particular, a transcritical bifurcation is observed
at R0 = 1, indicating an exchange of stability between the DFE and the endemic
equilibrium. This bifurcation highlights that a reproduction number less than
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unity alone may be insufficient to eliminate the disease, emphasizing the need for
complementary control measures, such as quarantine and mask compliance, to en-
sure effective disease management. The equilibrium point of a dynamical system
is said to be stable if all solutions converge to the equilibrium point within an
invariant region; see, for instance, [20].

Local stability of disease-free equilibrium point E∗0
Theorem 4.1. The model system (2) is locally asymptotically stable (LAS) at the
disease-free equilibrium point E∗0 if R0 < 1 and unstable otherwise.

Proof. To check local stability for disease-free equilibrium point E∗0 the system (2)
is linearized to obtain the Jacobian matrix J (E∗0) as follows:

ψ = β(Ia + ηIs).

The Jacobian matrix J (E∗0) becomes

J (E∗0) =



−Q1 0 0 0 0 0 0 0

αρu −µ 0 0 −βηU0 −βU0 0 0

α(1− ρu) 0 −µ 0 −βη(1− τ)M0 −β(1− τ)M0 0 0

0 0 0 −Q2 βη(U0 + (1− τ)M0) β(U0 + (1− τ)M0) 0 0

0 0 0 εκs −Q3 0 0 0

0 0 0 ε(1− κs) 0 −Q4 0 0

0 0 0 0 ξ 0 −Q5 0

0 0 0 0 γ3 γ1 γ2 −µ



.

(13)
All the eigenvalues of the Jacobian matrix J (E∗0), must be negative to prove the
local stability of the system at the DFE point. The eigenvalues of J (E∗0)) are
λ1 = −Q1, λ2 = −Q5, λ3 = λ4 = λ5 = −µ and

aλ3 + bλ2 + cλ+ d = 0, (14)

with
a = 1,

b = Q2 +Q3 +Q4,

c = Q2Q3 +Q2Q4 +Q3Q4 −

(
Q6Q7

Q1

)
,

d = Q2Q3Q4(1−R0),

(15)
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where, Q6 =
(

(1 − κ) + ηκ
)

and Q7 =
(αβπε

µ

)
and to be certain about the

nature of the roots in Equation (14), the second half of this equation leads us to
a polynomial of degree three. The Routh-Hurwitz criteria have been used to solve
this cubic polynomial.

Definition 4.2. The Routh-Horwitz criteria are used to examine the nature of
the roots of the polynomials. By [21], the Routh-Hurwitz criteria, the solution set

X = {S(t), U(t),M(t), E(t), Is(t), Ia(t), Qs(t), R(t)},

of the system is stable if all real roots λ of the characteristic equation lie in the
left-hand complex plane, meaning Reλ < 0 for all roots λ.

Clearly, b > 0, and obviously, d > 0 if R0 < 1. Now, solving for (bc−d), we obtain
the following result:

bc− d =(Q2 +Q3 +Q4)
[
Q2Q4(1−Ra) +Q2Q3(1−Rs)

]
+Q3Q4(Q3 +Q4) +Q2Q3Q4R0 > 0.

(16)

We conclude that b.c − d > 0, if and only if Ra < 1, Rs < 1 and R0 < 1.
All the conditions of Routh-Horwitz’s criteria are satisfied, indicating that all the
complex roots λ are negative and lie in the left-half plane. Thus, the characteristic
Equation (14) has only negative roots, which ensures that the system is locally
asymptotically stable (LAS) at the disease-free equilibrium point (DFE).

Local stability of endemic equilibrium point E∗∗

Theorem 4.3. The model system (2) is locally asymptotically stable (LAS) around
the endemic equilibrium point E∗∗ for R0 > 1. Also system (2) experiences a
backward bifurcation at R0 > 1 .

Proof. To investigate the local asymptotic stability of the endemic equilibrium
point E∗∗, we use the theory of center manifold.

Let us re-write our system (2) by using the notations S(t) = x1, U(t) = x2 ,
M(t) = x3 , E(t) = x4 , Is(t) = x5 , Ia(t) = x6 , Qs(t) = x7 , R(t) = x8. By using
vector notation x = (x1, x2, x3, x4, x5, x6, x7, x8)T . The model system (2) can be

written in the form
dx

dt
= f(x) with

f = (f1, f2, f3, f4, f5, f6, f7, f8)T ,
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as follows:

ẋ1 = f1 = π − (µ+ α)x1,

ẋ2 = f2 = αρx1 − β(x6 + ηx5)x2 − µx2,

ẋ3 = f3 = α(1− ρ)x1 − β(1− τ)(x6 + ηx5)x3 − µx3,

ẋ4 = f4 = β(x6 + ηx5)x2 + β(1− τ)(x6 + ηx5)x3 −Q2x4,

ẋ5 = f5 = εκx4 −Q3x5,

ẋ6 = f6 = ε(1− κ)x4 − (µ+ γ1)x6,

ẋ7 = f7 = ξx5 −Q5x7,

ẋ8 = f8 = γ1x6 + γ2x7 + γ3x5 − µx8.



(17)

We consider the disease transmission rate β∗b as a bifurcation parameter, β = β∗b
corresponding to R0 = 1, is

β∗b =
µQ1Q2Q3Q4

απε(ρτ + (1− τ))(Q3(1− κ) + ηQ4κ)
. (18)

The system Equation (17) has a simple eigenvalue with zero real part, and all the
other eigenvalues are negative (which means it has a hyperbolic equilibrium point).
Thus, centre manifold theory can be used to analyze the dynamics of the system
(17) near β = β∗b , by using the approach as in [22]. The Jacobian matrix of the
transformed system (17) evaluated at disease free equilibrium (E0) for COVID-19,
denoted by J∗(E0) and given by

J∗(E0) =
−α− µ 0 0 0 0 0 0 0
αρu −µ− βx9 0 0 −βηx2 −βx2 0 0

α(1− ρu) 0 −µ− β(1− τ)x9 0 −βη(1− τ)x3 −β(1− τ)x3 0 0
0 βx9 β(1− τ)x9 −Q2 βηx2 + βη(1− τ)x3 β(x2 + (1− τ)x3) 0 0
0 0 0 εκs −Q3 0 0 0
0 0 0 ε(1− κs) 0 −Q4 0 0
0 0 0 0 ξ 0 −Q5 0
0 0 0 0 γ3 γ1 γ2 −µ

 ,

(19)
where,

x9 = (ηx5+x6), Q2 = (µ+ε), Q3 = (µ+ξ+γ3), Q4 = (µ+γ1), Q5 = (µ+σ+γ2).

At disease-free equilibrium, we have

x1 =
π

Q1
, x2 =

απρ

µQ1
, x3 =

απ(1− ρ)

µQ1
, x4 = x5 = x6 = x7 = x8 = 0.
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The right eigenvector w = (w1, w2, w3, w4, w5, w6, w7, w8)>, associated with zero
eigenvalues of the jacobian matrix such that J∗(E0).w = 0, at β = β∗b with w4 = 1
is

(w1, w2, w3, w4, w5, w6, w7, w8)> =

(
0,

−Q2ρ

µ(1− τ + ρτ)
),
Q2(1− τ)(1− ρ)

µ(1− τ + ρτ)
, 1,

εκ

Q3
,

ε(1− κ)

Q4
,
εξκ

Q5Q3
,
(εγ1(1− κ)

µQ4
+
ε(ξγ2 + γ3Q5)

µQ5Q3

))
.

Similarly, we find the left eigen-vector v = (v1, v2, v3, v4, v5, v6, v7, v8), such that
J∗(E0) associated with zero eigenvalue and with

v4 =
Q4Q3[Q3(1− κ) + ηQ4κ]

Q2[Q2
3(1− κ) + ηQ2

4κ]
.

The left eigenvector (v1, v2, v3, v4, v5, v6, v7, v8) is as follows(
0, 0, 0,

Q4Q3[Q3(1− κ) + ηQ4κ]

Q2[Q2
3(1− κ) + ηQ2

4κ]
,

ηQ2
4Q3

ε[Q2
3(1− κ) + ηQ2

4κ]
,

Q4Q2
3

ε[Q2
3(1− κ) + ηQ2

4κ]
, 0, 0

)
.

The right-eigenvector w and left-eigenvector v satisfy the condition v.w = 1. Now
we compute the following non-zero second-order partial derivatives of the system
(17) at the disease-free equilibrium point.

Now we compute the coefficients a and b as in [22]. By substituting the values of
all non-zero second-order partial derivatives and the left and right eigen vectors
from the above system at the threshold value β = β∗b , we obtain

a =

8∑
k,i,j=1

vkwiwj
∂2fk(β∗1 , ε

∗
0)

∂xi∂xj
= 2βv4(ηw5 + w6)

(
w3(1− τ) + w2

)
. (20)

The second bifurcation coefficient b is given by

b =

8∑
k,j=1

vkwj
∂2fk(ε∗0, β

∗
1)

∂xi∂βm
= v4[(x6+ηx5)(w3(1−τ)+w2)+(w6+ηw5)(x2+(1−τ)x3)].

(21)
From the above expressions, we observe that b is always positive; according to
remark 1 in Theorem 4.1 from [22], the system (17) exhibits bifurcation phenomena
if the bifurcation coefficient a is positive. The positivity of a, holds if

κ <
Q3

Q3 − ηQ4
, (22)

provides a necessary condition for the occurrence of bifurcation. This concludes
that the system exhibits a transcritical bifurcation at the basic reproduction num-
ber R0 = 1. Hence, as in [4] we conclude that the endemic equilibrium point E∗∗
is locally asymptotically stable for R0 > 1.
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The bifurcation analysis

Bifurcation analysis is performed to investigate qualitative changes in system dy-
namics. In particular, a transcritical bifurcation occurs at R0 = 1, indicating an
exchange of stability between the DFE and the endemic equilibrium. This result
implies that reducing R0 below unity is necessary but may not be sufficient for
the elimination of disease, highlighting the importance of complementary control
measures, such as effective quarantine and high compliance with masks, to ensure
a controlled epidemic. Figure 2 provides a graphical representation of forward
bifurcation, while Figure 3 illustrates the backward bifurcation. These visualiza-
tions are based on the parameter values specified in the respective captions. The

Figure 2: Forward bifurcation: π = 28.6, µ = 0.436, α = 0.69, ρ = 0.582,
β = 0.082, η = 1.496, τ = 0.458, ε = 0.41, κ = 0.336, ξ = 0.12, γ3 = 0.064,
σ = 0.434, γ2 = 0.184, γ1 = 0.27.

model system (2) exhibits a transcritical bifurcation at R0 = 1, with a forward
bifurcation for R0 > 1 indicating disease persistence. However, the Figure 3 ex-
plains the presence of a backward bifurcation where both disease-free and endemic
equilibria coexist for Rc0 < R0 < 1, which means that reducing R0 below 1 alone is
insufficient for eradication. In such scenarios, mask usage must be complemented
by additional interventions such as social distancing, public awareness, isolation
of cases, and effective case detection. The influence of mask efficacy, denoted by
τ , on disease dynamics is demonstrated in Figure 4. We observe that an increase
in τ facilitates better control over the spread of COVID-19. This aligns with our
model’s objective, demonstrating that masks play a crucial role in mitigating the
rapid transmission of the disease.
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Figure 3: Backward bifurcation: π = 32.4, µ = 0.358, α = 0.675, ρ = 0.582,
β = 0.071, η = 1.44, τ = 0.6, ε = 0.715, κ = 0.336, ξ = 0.12, γ3 = 0.064,
σ = 0.434, γ2 = 0.184, γ1 = 0.27.

Figure 4: Effect of τ on the bifurcation behaviour of model dynamics.
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Global stability analysis of endemic equilibrium point
Theorem 4.4. If R0 > 1, then the endemic equilibrium point (E∗∗) of the system
(2) is globally asymptotically stable in the region ΩR.

Proof. Suppose that R0 > 1 for which (E∗∗) exits, for checking stability we define
the Lyapunov Function VF . Consider the class Qs and R as redundant classes.

VF = (S − S∗ − S∗ lnS) + (U − U∗ − U∗ lnU) + (M −M∗ −M∗ lnM)

+D1(E − E∗ − E∗ lnE) +D2(Is − I∗s − I∗s ln Is) +D3(Ia − I∗a − I∗a ln Ia),
(23)

where D1, D2 and D3 are the constants to be determined. We now show that
dVF
dt
≤ 0. The time derivative of VF is given by

V̇F =

(
1− S∗

S

)
Ṡ +

(
1− U∗

U

)
U̇ +

(
1− M∗

M

)
Ṁ +D1

(
1− E∗

E

)
Ė

+ D2

(
1− I∗s

Is

)
İs +D3

(
1− I∗a

Ia

)
İa. (24)

At the endemic equilibrium, the steady state solutions of system (7) yield:

α =
π

S∗
− µ, αρ∗ =

(
µ+ ψ∗

)U∗
S∗

, α(1− ρ∗) = (µ+ (1− τ)ψ∗)
M∗

S∗
,

ψ∗ = β∗(I∗a + ηI∗s ), π = (µ+ α)S∗, Q2 = ψ∗
U∗

E∗
+ (1− τ)ψ∗

M∗

E∗
,

Q3 =
εκE∗

I∗s
, Q4 =

ε(1− κ)E∗

I∗a
.

(25)

Substituting the set of Equations from (25) into (24) after some algebraic manip-
ulation it gives,

V̇F =−
(µ
S

)(
S − S∗

)2
+ P0

(
2− p− 1

p

)
+ µU∗

(
2− 1

q
− q
)

+ P1

(
1− 1

q
− qz + z

)
+ P2

(
1− qy − 1

q
+ y
)

+ µM∗
(

2− w − 1

w

)
+ P3

(
1− wz − 1

w
+ z
)

+ P4

(
1− wy − 1

w
+ y
)

+D1P1

(
qz − qz

x
− x+ 1

)
+D1P2

(
qy − qy

x
− x+ 1

)
+D1P3

(
wz − wz

x
− x+ 1

)
+D1P4

(
wy − wy

x
− x+ 1

)
+D2P5

(
x− x

y
− y + 1

)
+D3P6

(
x− x

z
− z + 1

)
.

The coefficients of x, y, z, qy, qz, wy, and wz are thus set to zero and solved for
the values of D1, D2, and D3. We obtain

D1 = 1, D2 =
P2 + P4

P5
, D3 =

P1 + P3

P6
. (26)
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After using (26) in the above, we obtained

V̇F = −
(µ
S

)(
S−S∗

)2
+P0

(
2−p−1

p

)
+µU∗

(
2−1

q
−q
)

+µM∗
(

2−w− 1

w

)
+f1−f2,

(27)

f1 =P1

(
4− p

q
− qz

x
− x

z
− 1

p

)
+ P2

(
4− p

q
− qy

x
− x

y
− 1

p

)
+ P3

(
4− p

w
− wz

x
− x

z
− 1

p

)
+ P4

(
4− p

w
− wy

x
− x

y
− 1

p

)
, (28)

f2 =
(
P1 + P2 + P3 + P4

)(
2− p− 1

p

)
. (29)

In order to prove that V̇F ≤ 0. Already the first term −
(µ
S

)(
S − S∗

)2
≤ 0. Our

only task is to prove that the remaining terms are all non-positive. By the arith-
metic mean, geometric mean inequality

−4 ≥
(
− p

w
− wz

x
− x

z
− 1

p

)
.

Hence, by the GM-AM inequality, the expressions in f1 are negative. So f1 ≤ 0,
also f1 ≤ f2. Therefore, f ≤ 0, and equality holds if and only if p = q = x = z = 1.
We prove that all the terms of V̇F in (27) are non-positive. So VF is positive definite

at the endemic equilibrium and
dVF
dt
≤ 0 with

dVF
dt

= 0 if and only if S = S∗,
U = U∗, M = M∗, E = E∗, Is = I∗s , Ia = I∗a , The only invariant set in ΩR8

+
is the

set that contains only the endemic equilibrium point. This shows that each solution
intersects R8

+ limit to the endemic equilibrium. Therefore, the largest invariant set
where V̇F = 0 is the singleton of EE. According to Lasalle’s Invariance Principle
[23], EE is therefore globally asymptotically stable in an invariant region ΩR for
R0 > 1.

5. Simulations

Sensitivity analysis

Sensitivity analysis identifies the parameters that most significantly influence R0

and disease persistence. The roles of mask efficacy, symptomatic fraction, and
quarantine rate are highlighted using partial derivatives, contour plots, and nor-
malized forward sensitivity indices, which quantify the relative change in R0 re-
sulting from a relative change in each parameter. These results help to determine
the most effective intervention targets.
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Definition 5.1. From [24], the normalized sensitivity index of reproductive num-
ber R0, which depends differentiably on a parameter h, is defined by an implicit
formula for R0,

γR0

h =
∂R0

∂h
× h

R0
. (30)

Sensitivity indices of R0 to parameters for COVID-19 model, evaluated at
baseline parameter values presented in Table 1.

Table 1: Parameter values used in the COVID-19 model with R0 = (0.686, 2.05)
and corresponding sensitivity indices of R0 evaluated at the baseline parameter
values.

Parameters Values Source Sensitivity Indices
π 3118 (day−1) calculated 1
µ 4.3× 10−5 (day−1) calculated −0.99
α (0.006 , 0.008) [14, 25] 0.005
ρ 0.4 [14, 26] 0.375
β (1.45× 10−8, 3× 10−8) assumed assumed
η 1.44 [27] 0.79
τ 0.6 assumed −0.46
ε 0.006 [28] 0.006
κ 0.6 assumed 0.47
ξ (0.1493, 1.4286) [29] −0.53
γ1 0.583 [14] 0.58
γ3 0.04 assumed −0.53

Impact of parameters on the R0.
The influence of critical epidemiological and behavioral parameters on the basic
reproduction number, R0, was investigated using contour plots. Among the pa-
rameters examined, the transmission rate β, awareness sensitivity κ, mask usage
rate τ , and quarantine response ξ were identified as the most influential determi-
nants of disease spread. The analysis demonstrates thatR0 decreases with increas-
ing mask usage (τ), underscoring the pivotal role of widespread mask adoption in
curbing transmission. Conversely, R0 rises with a greater proportion of symp-
tomatic individuals and an elevated force of infection, while enhanced mask effi-
cacy contributes to its decline. These results highlight the continued importance
of non-pharmaceutical interventions (NPIs) in reducing COVID-19 transmission.
From Table 1: η has a significant positive effect as increasing η increases R0, in-
creasing mask efficacy τ reduces R0. β has strongest effect, reducing transmission
by masking is most effective. Figure 5(a) indicates that an increase in the pro-
portion of symptomatic individuals leads to an elevation in R0, whereas improved
mask efficacy significantly reduces it. In Figure 5(b), a higher force of infection is
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associated with an increase in R0; however, this effect can be mitigated through
improvements in mask efficacy. Figure 5(c) further reveals that although an in-
crease in screened cases initially elevates R0, this can be counterbalanced by a
rise in quarantined individuals receiving treatment, thereby suppressing R0 and
enhancing disease control.

Numerical simulations

Numerical results are carried out using parameter values from the various liter-
ature; see Table 1. The initial data values are based on the statistics of South
Africa’s initial total population in 2022, estimated at 59,890,000 [30]. The life
expectancy in South Africa is approximated as µ = 1

64.38×365 day−1, and the birth
rate in 2022 was 0.019. The recruitment rate is as π = 3118 per day [14]. The
initial conditions for the state variables are calculated from different sources as
indicated in this section. Initial values S = 28, 241, 051, U = 11, 296, 420, and
M = 16, 944, 631, based on reasonable assumptions, while the initial values for
other state variables were computed accordingly. As of May 30, 2022, laboratory-
confirmed COVID-19 cases in South Africa were reported as Is = 481, 537 [31].
The number of asymptomatic individuals was estimated to be approximately 24%
of the symptomatic cases, yielding Ia = 115, 569 [32]. Additionally, hospitalized
individuals constituted 41.3% of Is, resulting in Qs = 198, 875 as of May 28, 2022.
The exposed population was estimated at E = 1, 791, 318 [33]. Furthermore, ap-
proximately 97% of the population had recovered, leading to R = 820, 599 [34].
According to [35], the elderly population in South Africa accounts for approxi-
mately 3% of the total. Wearing masks effectively reduces both contact rates and
infection probabilities, particularly among vulnerable populations such as the el-
derly and immunosuppressed individuals. Our analysis indicates that if at least
72% of the population adopts mask usage, the basic reproduction number satis-
fies R0 < 1, ultimately leading to disease eradication. (Figure 6a), (Figure 7a),
and (Figure 8a) show that increased awareness, increased number of quarantined
individuals, and higher mask efficacy contribute to controlling the spread of the
disease. (Figure 6b), (Figure 7b), and (Figure 8b) illustrate that if asymptomatic
individuals adopt precautionary measures such as wearing masks, it can signif-
icantly enhance their recovery. The impact of mask efficacy on asymptomatic
individuals reveals an inverse correlation. An increase in mask efficacy reduces
asymptomatic infections, demonstrating the effectiveness of masks in controlling
disease spread. Moreover, mask usage among asymptomatic individuals helps
lower the contact rate, thereby limiting transmission. A decrease in the infection
rate fosters a controlled environment for individuals affected by COVID-19. Con-
versely, if the infection rate increases, the model dynamics show that the threshold
value also rises, signifying a substantial increase in disease spread as R0 surpasses
one. On the other hand, a reduction in the infection rate results in R0 < 1, indi-
cating effective disease control. Even when relying solely on non-pharmaceutical
interventions such as mask usage, reducing infection rates leads to a correspond-
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(a)

(b)

(c)

Figure 5: Contour plots of R0. (a) Screened individuals vs the efficacy of masks.
(b) Infection rate vs efficacy of masks. (c) Screened vs quarantined individuals.
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ing decline in the number of infected individuals, aiding in disease mitigation.
Additionally, an increase in κ significantly influences the dynamics of the infected
population. As κ rises, COVID-19 prevalence also increases. However, regardless
of the proportion of individuals transitioning into the infected compartment, the
disease will persist in the human population but remain controllable, ultimately
stabilizing as an endemic condition. The following figures illustrate the model
dynamics in response to these factors.

(a)

(b)

Figure 6: Analytical impact of rate of screened or tested positive on (a) Symp-
tomatic Is, (b) Asymptomatic Ia, individuals of COVID-19 in South Africa.
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(a)

(b)

Figure 7: Analytical behavior of rate of quarantined individuals, (a) Symptomatic
Is, (b) Asymptomatic Ia, individuals of COVID-19 in South Africa.
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(a)

(b)

Figure 8: Analytical impact of efficacy of mask on (a) Symptomatic Is, (b) Asymp-
tomatic Ia, individuals of COVID-19 in South Africa.
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Results and discussion

This study presents a refined deterministic compartmental model, the SUMEIsIaQsR
model, to give insights on the transmission dynamics of COVID-19 in South Africa,
with a focused investigation into the synergistic effects of mask-wearing and quar-
antine. The model provides both theoretical insights and practical public health
implications, offering a deeper understanding of how non-pharmaceutical interven-
tions interact to influence epidemic outcomes.

The work introduces a refined epidemic model that integrates two key interven-
tions: population-level mask usage, distinguishing between masked and unmasked
susceptible, and quarantine of symptomatic individuals, enabling a detailed anal-
ysis of their combined impact on transmission dynamics, beyond earlier models
that treated these strategies separately. The model rigorously defines the basic re-
production number, R0, as the epidemic threshold and shows that the disease-free
equilibrium is locally asymptotically stable when R0 < 1, while sustained trans-
mission occurs when R0 > 1. Furthermore, a transcritical bifurcation at R0 = 1
and the potential for a backward bifurcation, where a stable endemic equilibrium
coexists with the disease-free state for Rc < R0 < 1, imply that merely reducing
R0 below unity is insufficient for eradication, necessitating early and aggressive
interventions to suppress infections below a critical threshold.

The analytical expression for R0 explicitly incorporates mask efficacy (τ) and
the proportion of the population using masks (1 − ρ). Numerical simulations in-
dicate that a compliance rate of at least 72% is necessary to achieve R0 < 1 and
prevent large-scale outbreaks, providing a concrete target for public health pol-
icy. Contour plots illustrate how high mask efficacy mitigates the heightened risk
from stronger transmission or a larger symptomatic population. For R0 > 1, a
Lyapunov function establishes that the endemic equilibrium is globally asymptot-
ically stable, confirming that in the absence of sufficient interventions, the disease
will persist. Sensitivity analysis further reveals that the transmission rate (β) is
the most influential parameter, followed by mask efficacy (τ) and the proportion of
unmasked individuals (ρ). These findings underscore the critical role of widespread
mask use and social distancing, supported by enhanced quarantine and recovery
measures, as a hierarchy of interventions for effective control.

While the model provides valuable insights, it is subject to several limita-
tions that suggest directions for future work. The assumption of a homogeneous,
well-mixed population ignores heterogeneities in contact structure, age distribu-
tion, and spatial clustering, all of which strongly influence transmission. More-
over, waning immunity and the potential for reinfection are omitted; incorporating
these processes would be essential for long-term projections and assessing the role
of booster vaccinations. Finally, the parameter estimates were calibrated to a spe-
cific phase of the pandemic. Fitting the model to time-series data across multiple
epidemic waves, including those driven by new variants, would strengthen its pre-
dictive capacity. Addressing these limitations would enhance the model’s utility
as a decision-support tool for public health planning and policy formulation with
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respect to COVID-19.
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