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Abstract

This document introduces the idea of metallic vector fields in the frame-
work of semi-Riemannian manifolds. Then, we study the geometry of such
vector fields on closed and compact manifolds. The existence of metallic
fields on immersed submanifolds will also be investigated. Finally, we inves-
tigate metallic vector fields on warped product manifolds.
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1. Introduction
Geometric vector fields are essential in the realms of theoretical physics and dif-
ferential geometry. Among these vector fields are conformal and conformal Killing
fields. A vector field X on a semi-Riemannian manifold (M, g) is classified as a
conformal vector field if there exists a smooth function ϕ such that the Lie deriva-
tive of g along X, denoted as LXg, equals 2ϕg. When ϕ is identically zero, X is
referred to as a conformal Killing vector field or simply a Killing vector field. It is
widely recognized that the set of 1-parameter local diffeomorphisms generated by
a Killing vector field acts as isometries of the manifold (M, g). Consequently, in
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the context of spacetime manifolds, Killing vector fields characterize the symme-
tries present in the underlying manifold. Moreover, thorough investigations into
conformal vector fields can be found in [1–3]. Also, the notion of 2-conformal
vector fields has been defined. A vector field X on a semi-Riemannian manifold
(M, g) is termed a 2-conformal whenever there exists a smooth function ϕ such
that LXLXg = 2ϕg. If ϕ vanishes, then X becomes 2-Killing. Considering a
2-conformal vector field as a potential of hyperbolic Ricci soliton [4], we obtained
some rigidity results for such spaces [5]
Using the notion of the square root of the metric tensor g, Garcia-Parrado and
Senovilla have defined another geometric vector field called a bi-conformal vector
field [6]. A bi-conformal vector field X refers to a vector field X defined on the
manifold M that satisfies the following conditions:

LXg = αg + βh, LXh = αh+ βg,

where α and β are smooth functions, with h representing a symmetric square root
of g. The functions α and β are referred to as gauges of the symmetry [1, 6],
serving a purpose akin to the factor ϕ found in the concept of conformal vector
fields. Subsequently, De et al. provided a definition for Ricci bi-conformal vector
fields as outlined in [7].
A vector field X defined on a semi-Riemannian manifold (M, g) is classified as a
Ricci bi-conformal vector field [7–11] if the following conditions hold:

LXg = αg + βRic, LXRic = αRic + βg,

in which α and β are differentiable functions and Ric represents the Ricci curvature
tensor associated with the metric g.

On the other hand, spacetime geometry and its connection to physical phenom-
ena are fascinating topics of research that have attracted numerous researchers
from both physics and mathematics. Einstein, in his general theory of relativity,
described gravity as a factor which leads curving spacetime manifold. Hence, grav-
ity is described by the metric tensor of spacetime manifold. Therefore, geometric
vector fields on a spacetime manifold also carry physical quantities and have phys-
ical interpretations. Motivated by this fact, we define a new geometric vector field
here:

Definition 1.1. A vector field X defined on a semi-Riemannian manifold (Mn, g)
is termed a metallic vector field if it fulfills the condition

LXLXg = aLXg + bg, (1)

where a and b represent real numbers.

The reason behind this naming will be explained in what follows.
If X is a homothetic conformal vector field, i.e., LXg = σg, for some real constant
σ, then X is a metallic with scalars a and b if and only if σ satisfies the so-called
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metallic quadratic equation σ2 − aσ − b = 0.
In particular case, when a = b = 1 the golden number 1+

√
5

2 is a root of equation
σ2 − σ − 1 = 0, so X is called a golden vector field whenever we have LXLXg =
LXg + g.

A metallic vector field is a bridge to connect hyperbolic Ricci solitons to Ricci
solitons structures, so it can relate wave phenomena of semi-Riemannian metrics
and their heat behaviour. In the subsequent segment, we examine various geomet-
ric characteristics of metallic vector fields.

2. Geometry of metallic vector fields
In the following, we establish certain findings about metallic vector fields on com-
pact Riemannian manifolds.

The following formulas have been proven in [12, 13] for any arbitrary vector
field W on (M, g):

div(LW g) = 2
(
d(div(W )) + iRc(W )g

)
, (2)

trace(LWLW g) = 2
(
‖∇W‖2 + div(∇WW )− Ric(W,W )

)
, (3)

where Ric denotes the Ricci curvature, Rc represents the Ricci operator defined
such that g(RcW, Y ) = Ric(W,Y ) for any smooth vector fields W,Y defined on
M , and ∇ signifies the Levi-Civita connection associated with g. At this point,
we will initially deduce:

Proposition 2.1. Let W be a metallic vector field with parameters a and b.
(i) If LWLW g is traceless, then either divW is constant, or W is a 2-Killing field.
Moreover, if M is closed and

∫
M

Ric(W,W ) ≤ 0, then ∇W = 0, hence W is a
parallel vector field.
(ii) When M is connected, compact, and divergence of LWLW g is equal to zero,
then either W is 2-conformal, or Ric(W,W ) = 0.

Proof. (i) When trace(LWLW g) = 0, tracing into the Equation (1) it follows that:

2adiv(W ) + nb = 0,

therefore, if a 6= 0, then divW = −nb2a . Also, from the above formula we can
deduce if a = 0, then b = 0 and (1) can be rewrite as LWLW g = 0.
Also, we mentioned

trace(LWLW g) = ‖∇W‖2 − Ric(W,W )− div(∇WW ),

hence ∫
M

‖∇W‖2 =

∫
M

Ric(W,W ) ≤ 0,
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and we get ∇W = 0.
(ii) If div(LWLW g) = 0, and considering the following equality (see [12])

(div(LW g))(Y ) = 2Y (div(W )) + 2Ric(W,Y ),

for some vector field Y . Incorporating the divergence operator into (1), we obtain

adiv(LW g) = 0. (4)

Clearly, if a = 0 then W is 2-conformal by (1). In the case that a 6= 0, we get

Ric(W,W ) = −g(div(W ),W ) = −W (div(W )).

Since trace(LWLW g) = 0 and the manifold M is connected, it follows that
trace(LWLW g) remains constant. By applying the trace operation to both sides
of (1), we deduce

trace(LWLW g) = 2a(div(W )) + nb,

and then differentiating it in the direction of W , we get W (div(W )) = 0. Conse-
quently, Ric(W,W ) = 0, thus concluding the proof.

Corollary 2.2. When W is a metallic vector field, div(LWLW g) = 0, and a 6= 0
then, ∆(div(W )) = −div(RcW ).

Proof. We checked that adiv(LW g) = 0, and from (2) it follows that

2a
(
g(Rc(W ), Y ) + g(∇divW,Y )

)
= 0,

for any arbitrary field Y , and we obtain

2a(∇divW +Rc(W ) = 0.

By analyzing the divergence mentioned above, we obtain

0 = 2a
(
∆(div(W )) + div(RcW )

)
,

since a 6= 0 therefore, W satisfies ∆(div(W )) = −div(RcW ).

Proposition 2.3. Let vector field W be a metallic, divergence-free, and a 6= 0.
Then ∫

M

‖LWLW g‖2 = nb2V ol(M) + 2a2
∫
M

(
‖∇W‖2 − Ric(W,W )

)
.

Moreover, if one of the following conditions hold:
(i)
∫
M
‖LWLW g‖2 ≤ nb2V ol(M);

(ii) 2a2
∫
M

(
Ric(W,W )− ‖∇W‖2

)
≥ nb2V ol(M),

then W becomes Killing.
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Proof. We calculate the Hilbert–Schmidt norms as shown in Equation (1), from
which we deduce:

‖LWLW g‖2 = b2‖Id‖2 + 2ab〈g,LW g〉+ a2‖LW g‖2

= nb2 + 4abdiv(W ) + a2‖LW g‖2 = nb2 + a2‖LW g‖2.

Since by [14] we have:

0 =

∫
M

(
Ric(W,W ) +

1

2
‖LW g‖2 − ‖∇W‖2 − (div(W ))2

)
=

∫
M

(
Ric(W,W ) +

1

2
‖LW g‖2 − ‖∇W‖2

)
,

we obtain∫
M

(
‖LWLW g‖2 − nb2

)
= a2

∫
M

‖LW g‖2 = 2a2
∫
M

(
‖∇W‖2 − Ric(W,W )

)
,

and we get the assertion.
If
∫
M
‖LWLW g‖2 ≤ nb2V ol(M) and a 6= 0, then LW g = 0.

So, if 2a2
∫
M

(
Ric(W,W )−‖∇W‖2

)
≥ n

∫
M
nb2V ol(M), then LWLW g = 0. Hence

aLW g + bg = 0. By taking the trace, we obtain 0 = 2adiv(W ) = nb, so b = 0
(constant) and LW g = 0.

In the unique scenario where the metallic field is identified as a W (Ric)-vector
field [15], we can establish the following proposition.

Proposition 2.4. A metallic W (Ric)-vector field on a manifold (Mn, g) that
meets the conditions ∇W = λRc, λ ∈ R∗, and trace(LWRic) = 0, such that
aλ 6= 0, is characterized as Ricci-flat, and W is a parallel vector field. Further-
more, the converse is also valid.

Proof. One can easily check

div(W ) = λR, LW g = 2λRic, LWRic = 2λLW (Ric),

and the Equation (1) becomes

2λLWRic = 2aλRic+ 2g.

Since trace(LWRic) = 0, we get aλR + nb = 0. It follows that R is a constant.
Since trace(LWLW g) = 0, (3) gives

‖∇W‖2 + div(∇WW )− Ric(W,W ) = 0,

and from (2), we get

Ric(W,W ) =
1

2

(
div(LW g)(W )−W (div(W ))

)
= 0.
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As
‖∇W‖2 = λ2‖Rc‖2, div(∇W ) = λdiv(RcW ),

we infer
λ2‖Rc‖2 + λdiv(RcW ) = 0.

By integrating the above equation, we get Rc = 0, then ∇W = 0, so we get the
conclusion.

3. Metallic vector fields on submanifolds

Let N represent a Riemannian manifold equipped with the metric ḡ, while M
denotes an isometrically immersed submanifold within N , possessing the induced
metric g. For any smooth vector fields W and Y defined on M , along with any
normal vector field V, the Gauss andWeingarten equations are expressed as follows:

∇̄WY = ∇WY + h(W,Y ), ∇̄WW = −AWW +∇⊥WW,

where ∇̄ denotes the Levi-Civita connection corresponding to ḡ, ∇ signifies the
Levi-Civita connection associated with g, h represents the second fundamental
form, AW indicates the shape operator linked to W , and ∇⊥ is the normal con-
nection.
In the following discussion, we will assume thatM contains a metallic vector field,
specifically the tangential component W> of a concurrent vector field W existing
on the manifold (M̄, ḡ). Consequently, it holds that ∇̄W = I, where I denotes the
identity map. Furthermore, for any vector fields U and V that are tangent to M ,
we find [16]

∇UW> = U +AW>U,

(LW>g)(U, V ) = 2
(
g(U, V ) + g(AW⊥U,U)

)
,

(LW>LW>g)(U, V ) = 2
(

2g(U, V ) + 4g(AW⊥U, V ) + 2g(A2
W⊥U, V )

+g
(
(∇W>AW⊥)U, V

))
.

We would like to remind [17, 18] that a hypersurface is classified as a metallic
shaped hypersurface if its shape operator A adheres to the equation

A2 = rA+ sI,

where r and s are real constants. It has been established that for a hypersurface
situated within a space of constant curvature, if the aforementioned condition holds
at a point, the hypersurface qualifies as pseudosymmetric (for further information,
refer to [14, 19]).
At this point, we can present the subsequent findings.
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Proposition 3.1. In the event that W> represents a metallic vector field situ-
ated on the hypersurface (M, g) exhibiting a parallel shape operator (specifically,
∇AW⊥ = 0), it can be classified as a metallic shaped hypersurface.

Proof. From Equation (1) and utilizing the aforementioned relations, we derive

(4− 2a)g(U,E) + (8− 2a)g(AW⊥U,E) + 4g(A2
W⊥U,E) = bg(U,E),

for any vector fields U,E tangent to M . Hence

A2
ζ⊥ =

4− a
2

Aζ⊥ +
2a+ b− 4

4
I,

and we reach the conclusion.

Proposition 3.2. Let the vector field denoted as W> be metallic, and consider
(M, g) as aW>-totally umbilical submanifold characterized by the condition AW⊥ =
fI, where f represents a smooth real-valued function defined on M . Then f sat-
isfies

W>(W>(f)) + (4f − a+ 4)W>(f) = 0.

Proof. In this case,

A2
W⊥U = f2U, (∇W>AW⊥)U = W>(f)U,

where U is arbitrary vector field, and we reach

4f2 + 2(4− a)f + 2W>(f)− 2a− b+ 4 = 0.

Taking the derivative along W> results in

−2W>(W>(f))− 2(4f − a+ 4)W>(f) = 0,

which leads us to our conclusion.

It is important to note that a totally geodesic submanifold refers to a subman-
ifold characterized by a vanishing shape operator; hence, as a consequence, we
deduce:

Proposition 3.3. In a totally geodesic submanifold, W> is metallic vector field
with 2a+ b = 4.

Proposition 3.4. If (Mn, g) denotes a compact minimal submanifold and W> is
metallic with a 6= 0 and the divergence of LW>LW>g is zero, then∫

M

‖AW⊥‖2 = n(n− 1)V ol(M).
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Proof. Given that M is compact, we can conclude that [3]∫
M

(
Ric(W>,W>) +

1

2
‖LW>g‖2 − ‖∇W>‖2 − (div(W>))2

)
= 0.

Direct computations give

‖LW>g‖2 = 4
(
‖AW⊥‖2 + 2trace(AW⊥) + n

)
= 4

(
‖AW⊥‖2 + n

)
,

‖∇W>‖2 = ‖AW⊥‖2 − 2trace(AW⊥) + n = ‖AW⊥‖2 + n,

(div(W>))2 = (trace(AW⊥))2 + 2ntrace(AW⊥) + n2 = n2,

Given that M represents a minimal submanifold. Additionally, from the equation
div(LW>LW>g) = 0 and the condition a 6= 0, it follows that div(LW>g) = 0.
From Equation (2), we derive

Ric(W>,W>) = 0,

hence we get the result.

Proposition 3.5. Consider a minimal submanifold denoted as (Mn, g) where
W> = ∇ψ is metallic, a 6= 0, and it is known that LW>LW>g exhibits divergence-
free properties. Under these conditions, we have

1

2
∆(‖∇ψ‖2) = ‖A∇ψ‖2 + n.

Thus, it follows that ‖∇ψ‖2 qualifies as a subharmonic function (specifically,
∆(‖∇ψ‖2) ≥ 0). Additionally, if the manifold M be closed, then ∇ψ = 0 is a
concurrent vector field.

Proof. Applying Bochner’s formula yields

1

2
∆(|∇ψ|2) = ‖∇W>‖2 +W>(div(W>)) + Ric(W>,W>),

and through the calculations conducted previously, we arrive at the initial con-
clusion. Assuming that M is closed, and taking into account that n = ∆(ψ), by
integrating this equation, we derive∫

M

‖A∇ψ‖2 = 0,

which shows A∇ψ = 0, and the proof is completed.



Mathematics Interdisciplinary Research 11 (1) (2026) 1− 13 9

4. Metallic vector fields on warped product manifolds
In the following, we present two outcomes concerning metallic vector fields within
warped product manifolds. Throughout the remainder of this section, (Mi, gi)
denotes semi-Riemannian manifolds for i = 1, 2, while M = M1 ×f M2 represents
a warped product semi-Riemannian manifold characterized by the metric tensor
g = g1 + f2g2 along with the warping function f : M1 → R. A smooth vector
field U defined on M can be expressed as U = U1 +U2, where each Ui symbolizes
smooth vector fields that are tangent to their respective manifolds Mi.

Proposition 4.1. Let vector field W = W1 +W2 be 2-Killing on M1×fM2, then:
(i) W1 is a metallic vector field on (M1, g1) with a 6= 0 iff W1 be Killing.

LW1
g1 = 0,

(ii) W2 is a metallic field on (M2, g2) if and only if there exist a, b ∈ R such that

LW2g2 = −bf
2 +W1(W1(f2))

2W1(f2) + af2g2
,

provided that 2W1(f2) + af2 6= 0.

Proof. From [13], for all U = U1 + U2 and V = V1 + V2 we have

(LWLW g)(U, V ) = (LW1LW1g1)(U1, V1) + f2(LW2LW2g2)(U2, V2)

+ 2W1(f2)(LW2g2)(U2, V2) +W1(W1(f2))g2(U2, V2).

Since, W is a 2-Killing vector field, then

(LW1LW1g1) = 0,

f2(LW2LW2g2) + 2W1(f2)(LW2g2) +W1W1(f)) = 0. (5)

If W1 be a metallic vector field, then there exist real scalars a and b, such that

LW1LW1g1 = aLW1g1 + bg1,

hence, we have aLW1
g1 + bg1 = 0. If a 6= 0, then

LW1
g1 =

−b
a
g1 ⇒ LW1

LW1
g1 =

b2

a2
g1.

Therefore b = 0 and we get the conclusion.
Similarly, if W2 be a metallic vector field, then there exist real scalars a and b,
such that

LW2LW2g2 = aLW2g2 + bg2.

Now, this formula beside (5), gives

f2(aLW2
g2 + bg2) + 2W1(f2)(LW2

g2) +W1W1(f))g2 = 0,
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so,

LW2g2 = −bf
2 +W1(W1(f2))

2W1(f2) + af2
g2.

Proposition 4.2. When manifold M1 ×f M2 admits a metallic vector field W =
W1 +W2 with parameters a, b, then:
(i) W1 is a metallic vector field on (M1, g1).
(ii) W2 is a metallic vector field on (M2, g2) if and only if

W1(ln f) and W1(W1(f))
f ,

be constants.

Proof. From [13], we can write

(LW g)(U, V ) = (LW1
g1)(U1, V1) + f2(LW2

g2)(U2, V2) +W1(f2)g2(U2, V2),

for every vector field U1, Vi tangent to Mi. At this point, the conclusion derives
from (1), along with the formulation of the second Lie derivative of g as outlined
below.
There exist scalars a and b such that

(LWLW g)(U, V ) = a(LW g)(U, V ) + bg(U, V ),

so, we get

(LW1
LW1

g1)(U1, V1) + f2(LW2
LW2

g2)(U2, V2) + 2X1(f2)(LW2
g2)(U2, V2)

+W1(W1(f2))g2(U2, V2) =

a
(
(LW1

g1)(U1, V1) + f2(LW2
g2)(U2, V2) +W1(f2)g2(U2, V2)

)
+bg1(U1, V1) + bf2g2(U2, V2),

for all vector fields Ui, Vi tangent to Mi. Hence, we have

LW1
LW1

g = aLW1
g + bg,

f2LW2
LW2

g2 = (af2 − 2X1(f2))LW2
g2 +

(
bf2 +W1(f2)−W1(W1(f2))

)
g2.

The above equations indicate that W1 is a metallic vector field on (M1, g1), and
W2 is metallic field on (M2, g2) if and only if

W1(f2)

f2
= W1(ln f),

W1(W1(f))

f
,

be constants.

Remark 1. Let the warping function f be constant. When M1 ×M2 admits a
metallic vector field W = W1 +W2, then Wi are metallic fields over Mi.
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Example 4.3. If vector field W = k ∂∂t + U is metallic on the warped product
Robertson-Walker spacetime (I ×f R3), where k ∈ R and

f : I → R, f(t) = ec1t+c2 c1, c2 ∈ R,

then U is a metallic vector field on (R3, gcan), by means of Proposition 4.2.

Conflicts of Interest. The authors declare that they have no conflicts of interest
regarding the publication of this article.
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