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Abstract

This document introduces the idea of metallic vector fields in the frame-
work of semi-Riemannian manifolds. Then, we study the geometry of such
vector fields on closed and compact manifolds. The existence of metallic
fields on immersed submanifolds will also be investigated. Finally, we inves-
tigate metallic vector fields on warped product manifolds.
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1. Introduction

Geometric vector fields are essential in the realms of theoretical physics and dif-
ferential geometry. Among these vector fields are conformal and conformal Killing
fields. A vector field X on a semi-Riemannian manifold (M, g) is classified as a
conformal vector field if there exists a smooth function ¢ such that the Lie deriva-
tive of g along X, denoted as Lxg, equals 2¢og. When ¢ is identically zero, X is
referred to as a conformal Killing vector field or simply a Killing vector field. It is
widely recognized that the set of 1-parameter local diffeomorphisms generated by
a Killing vector field acts as isometries of the manifold (M, g). Consequently, in
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the context of spacetime manifolds, Killing vector fields characterize the symme-
tries present in the underlying manifold. Moreover, thorough investigations into
conformal vector fields can be found in [1-3]. Also, the notion of 2-conformal
vector fields has been defined. A vector field X on a semi-Riemannian manifold
(M,g) is termed a 2-conformal whenever there exists a smooth function ¢ such
that LxLxg = 2pg. If ¢ vanishes, then X becomes 2-Killing. Considering a
2-conformal vector field as a potential of hyperbolic Ricci soliton [4], we obtained
some rigidity results for such spaces [5]

Using the notion of the square root of the metric tensor g, Garcia-Parrado and
Senovilla have defined another geometric vector field called a bi-conformal vector
field [6]. A bi-conformal vector field X refers to a vector field X defined on the
manifold M that satisfies the following conditions:

Lxg=ag+ Bh, Lxh=ah+ fyg,

where « and 8 are smooth functions, with h representing a symmetric square root
of g. The functions a and 8 are referred to as gauges of the symmetry [1, 6],
serving a purpose akin to the factor ¢ found in the concept of conformal vector
fields. Subsequently, De et al. provided a definition for Ricci bi-conformal vector
fields as outlined in [7].

A vector field X defined on a semi-Riemannian manifold (M, g) is classified as a
Ricci bi-conformal vector field [7—11] if the following conditions hold:

Lxg = ag+ pRic, LxRic= aRic+ g,

in which « and 3 are differentiable functions and Ric represents the Ricci curvature
tensor associated with the metric g.

On the other hand, spacetime geometry and its connection to physical phenom-
ena are fascinating topics of research that have attracted numerous researchers
from both physics and mathematics. Einstein, in his general theory of relativity,
described gravity as a factor which leads curving spacetime manifold. Hence, grav-
ity is described by the metric tensor of spacetime manifold. Therefore, geometric
vector fields on a spacetime manifold also carry physical quantities and have phys-
ical interpretations. Motivated by this fact, we define a new geometric vector field
here:

Definition 1.1. A vector field X defined on a semi-Riemannian manifold (M™, g)
is termed a metallic vector field if it fulfills the condition

LxLxg=alxg+bg, (1)
where a and b represent real numbers.

The reason behind this naming will be explained in what follows.
If X is a homothetic conformal vector field, i.e., Lxg = og, for some real constant
o, then X is a metallic with scalars a and b if and only if o satisfies the so-called



Mathematics Interdisciplinary Research 11 (1) (2026) 1 — 13 3

metallic quadratic equation 02 — ac — b = 0.
In particular case, when a = b = 1 the golden number 1+2‘/5 is a root of equation
0?2 —0—1=0, so X is called a golden vector field whenever we have LxLxg =
Lxg+g.

A metallic vector field is a bridge to connect hyperbolic Ricci solitons to Ricci
solitons structures, so it can relate wave phenomena of semi-Riemannian metrics
and their heat behaviour. In the subsequent segment, we examine various geomet-

ric characteristics of metallic vector fields.

2. Geometry of metallic vector fields

In the following, we establish certain findings about metallic vector fields on com-
pact Riemannian manifolds.

The following formulas have been proven in [12, 13] for any arbitrary vector
field W on (M, g):

div(Lwg) = 2(d(div(W)) + irew)9), (2)

trace(Lw Lwg) = 2 (|[VW|? + div(Vw W) — Ric(W, W)) , (3)

where Ric denotes the Ricci curvature, Rc represents the Ricci operator defined
such that g(RcW,Y) = Ric(W,Y’) for any smooth vector fields W, Y defined on
M, and V signifies the Levi-Civita connection associated with g. At this point,
we will initially deduce:

Proposition 2.1. Let W be a metallic vector field with parameters a and b.

(i) If Lw Lwg is traceless, then either divW is constant, or W is a 2-Killing field.
Moreover, if M is closed and [,, Ric(W,W) < 0, then VW = 0, hence W is a
parallel vector field.

(ii) When M is connected, compact, and divergence of Ly Lwg is equal to zero,
then either W is 2-conformal, or Ric(W, W) = 0.

Proof. (i) When trace(Lw Ly g) = 0, tracing into the Equation (1) it follows that:
2adiv(W) + nb = 0,

therefore, if a # 0, then divW = _;Tl;' Also, from the above formula we can
deduce if a = 0, then b =0 and (1) can be rewrite as Ly Ly g = 0.
Also, we mentioned

trace(Lw Lwg) = |[VW|? — Ric(W, W) — div(Vw W),

hence
/ HVW||2:/ Ric(W, W) <0,
M M
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and we get VIW = 0.
(ii) If div(Lw Lwg) = 0, and considering the following equality (see [12])

(div(Lwg))(Y) = 2Y (div(W)) + 2Ric(W, Y),
for some vector field Y. Incorporating the divergence operator into (1), we obtain
adiv(Lwg) = 0. (4)
Clearly, if a = 0 then W is 2-conformal by (1). In the case that a # 0, we get
Ric(W, W) = —g(div(W), W) = =W (div(W)).

Since trace(Lw Lwg) = 0 and the manifold M is connected, it follows that
trace(Lw Lw g) remains constant. By applying the trace operation to both sides
of (1), we deduce

trace(Lw Lwg) = 2a(div(W)) + nb,

and then differentiating it in the direction of W, we get W (div(W)) = 0. Conse-
quently, Ric(W, W) = 0, thus concluding the proof. O

Corollary 2.2. When W is a metallic vector field, div(Lw Lwg) =0, and a #0
then, A(div(W)) = —div(RcW).

Proof. We checked that adiv(Lyg) = 0, and from (2) it follows that
2a(g(Re(W),Y) + g(VdivIV,Y)) = 0,
for any arbitrary field Y, and we obtain
2a(VdivW + Re(W) = 0.
By analyzing the divergence mentioned above, we obtain
0 = 2a(A(div(W)) + div(ReW)),
since a # 0 therefore, W satisfies A(div(W)) = —div(RcW). O

Proposition 2.3. Let vector field W be a metallic, divergence-free, and a # 0.
Then

/ Lw Lowgl|? = nb2Vol(M) + 2a2/ (VW] - Ric(W, W)).
M M

Moreover, if one of the following conditions hold:
(Z) fM HCW‘CWQH2 < nb2V0l(M);

(ii) 2a* [, (Ric(W, W) — [[VW|?) > nb*Vol(M),
then W becomes Killing.
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Proof. We calculate the Hilbert—Schmidt norms as shown in Equation (1), from
which we deduce:

1w Lwg|I* = 0*|[1A|* + 2ablg, Lwg) + || Lw gl
= nb? + 4abdiv(W) + a®||Lwgl|* = nb® + a®||Lwg]?.

Since by [14] we have:

= ic 1 2_ 2 _ (div 2
0 = [ (Ricmw)+ Jicwsl? ~ 19w — (v

. 1
[ (Rictwaw) + glewal? - 9.
M
we obtain
/ (1Cw Lwgll? — nb?) = a2 / |Lwgll? = 20° / (VW2 - Ric(W, W)).
M M M

and we get the assertion.

If [\, | LwLwgl> < nb?Vol(M) and a # 0, then Ly g = 0.

So, if 2a* [}, (Ric(W, W) —[VW|?) > n [,, nb?*Vol(M), then Ly Ly g = 0. Hence
alwg + bg = 0. By taking the trace, we obtain 0 = 2adiv(W) = nb, so b = 0
(constant) and Ly g = 0. O

In the unique scenario where the metallic field is identified as a W (Ric)-vector
field [15], we can establish the following proposition.

Proposition 2.4. A metallic W(Ric)-vector field on a manifold (M™,g) that
meets the conditions VW = ARe, A € R*, and trace(Lw Ric) = 0, such that
aX # 0, is characterized as Ricci-flat, and W is a parallel vector field. Further-
more, the converse is also valid.

Proof. One can easily check
div(W) = AR, Lwg=2\Ric, LwRic=2ALw (Ric),
and the Equation (1) becomes
2A\Lw Ric = 2a\Ric + 2g.

Since trace(LwRic) = 0, we get aAR + nb = 0. It follows that R is a constant.
Since trace(Lw Lwg) = 0, (3) gives

[VW||? 4 div(Vw W) — Ric(W, W) = 0,

and from (2), we get

Ric(W, W) = = (div(Lwg) (W) — W(div(W))) = 0.

NN
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As
VW2 = M| Re||?, div(VIV) = Mdiv(ReW),

we infer

M| Re||? + Adiv(ReW) = 0.

By integrating the above equation, we get Rc = 0, then VW = 0, so we get the
conclusion. O

3. Metallic vector fields on submanifolds

Let N represent a Riemannian manifold equipped with the metric g, while M
denotes an isometrically immersed submanifold within N, possessing the induced
metric g. For any smooth vector fields W and Y defined on M, along with any
normal vector field V, the Gauss and Weingarten equations are expressed as follows:

VwY =VwY +h(W,Y), VW = -AyW + VW,

where V denotes the Levi-Civita connection corresponding to g, V signifies the
Levi-Civita connection associated with g, h represents the second fundamental
form, Ay indicates the shape operator linked to W, and V* is the normal con-
nection.

In the following discussion, we will assume that M contains a metallic vector field,
specifically the tangential component W T of a concurrent vector field W existing
on the manifold (M, g). Consequently, it holds that VW = I, where I denotes the
identity map. Furthermore, for any vector fields U and V that are tangent to M,
we find [16]

VUVV—r = U+ Ay U,
(Lot Lwrg)(UV) = 2(29(U,V) +4g(Aw U, V) + 29(A2, .U, V)

+g((VWTAWL)U7 V)) .

We would like to remind [17, 18] that a hypersurface is classified as a metallic
shaped hypersurface if its shape operator A adheres to the equation

A? =rA+sl,

where r and s are real constants. It has been established that for a hypersurface
situated within a space of constant curvature, if the aforementioned condition holds
at a point, the hypersurface qualifies as pseudosymmetric (for further information,
refer to [14, 19]).

At this point, we can present the subsequent findings.
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Proposition 3.1. In the event that W represents a metallic vector field situ-
ated on the hypersurface (M,g) exhibiting a parallel shape operator (specifically,
VAwr =0), it can be classified as a metallic shaped hypersurface.

Proof. From Equation (1) and utilizing the aforementioned relations, we derive
(4 = 20)g(U, E) + (8 — 2a)g(Aw U, E) + 4g(A}, . U, B) = bg(U, B),
for any vector fields U, E tangent to M. Hence

, 4-a 2a+b—4

A(L = TACL + 1 I,

and we reach the conclusion. O

Proposition 3.2. Let the vector field denoted as W' be metallic, and consider
(M, g) as a W T -totally umbilical submanifold characterized by the condition Ay,. =
fI, where f represents a smooth real-valued function defined on M. Then f sat-
isfies

WIWT () +@f —a+HW'(f) = 0.

Proof. In this case,
AL U = f2U, (VyrAw)U =W (£)U,
where U is arbitrary vector field, and we reach
4f2 424 —a)f +2WT(f) —2a—b+4=0.
Taking the derivative along W T results in
—2W (W (f) = 2(4f —a+ YW (f) =0,
which leads us to our conclusion. O

It is important to note that a totally geodesic submanifold refers to a subman-
ifold characterized by a vanishing shape operator; hence, as a consequence, we
deduce:

Proposition 3.3. In a totally geodesic submanifold, W is metallic vector field
with 2a + b = 4.

Proposition 3.4. If (M™,g) denotes a compact minimal submanifold and W is
metallic with a # 0 and the divergence of Ly Ly Tg is zero, then

/ 1Ay |2 = n(n — 1)Vol(M).
M
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Proof. Given that M is compact, we can conclude that [3]
1
[ (Ricar ™ W) 4 Slew gl = [VWTIR = @v(v ) <o,
M

Direct computations give

1w gll* =4 ([ Aw1* + 2trace(Aw) +n) = 4 ([Aw[* +n)

IVW T2 = [[Aw||? - 2trace(Aws) +n = [Aw | +n,
(div(W 1))? = (trace(Ay 1 ))? + 2ntrace(Ay 1) +n? = n?,
Given that M represents a minimal submanifold. Additionally, from the equation
div(LwTLyTg) = 0 and the condition a # 0, it follows that div(LyTg) = 0.
From Equation (2), we derive
Ric(W T, W) =0,

hence we get the result. O

Proposition 3.5. Consider a minimal submanifold denoted as (M™,g) where
WT = V4 is metallic, a # 0, and it is known that Lyy+ Ly g exhibits divergence-
free properties. Under these conditions, we have

1
FAUVYIP) = [Avyl* +n.

Thus, it follows that ||V)||? qualifies as a subharmonic function (specifically,
A(||[V¥]|?) > 0). Additionally, if the manifold M be closed, then Vb = 0 is a
concurrent vector field.

Proof. Applying Bochner’s formula yields
1
SAUVEP) = [VW TP+ W (div(WT) + Rie(W T, W),

and through the calculations conducted previously, we arrive at the initial con-
clusion. Assuming that M is closed, and taking into account that n = A(¢)), by
integrating this equation, we derive

/ |Avy]? =0,
M

which shows Ay, = 0, and the proof is completed. O
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4. Metallic vector fields on warped product manifolds

In the following, we present two outcomes concerning metallic vector fields within
warped product manifolds. Throughout the remainder of this section, (M;,g;)
denotes semi-Riemannian manifolds for ¢ = 1,2, while M = M; xy M, represents
a warped product semi-Riemannian manifold characterized by the metric tensor
g = g1 + f%go along with the warping function f : M; — R. A smooth vector
field U defined on M can be expressed as U = Uy + U, where each U; symbolizes
smooth vector fields that are tangent to their respective manifolds M;.

Proposition 4.1. Let vector field W = W1 + Wy be 2-Killing on My Xy M, then:
(i) W1 is a metallic vector field on (M, g1) with a # 0 iff Wy be Killing.

Ly, g1 =0,
(i) Wo is a metallic field on (Ma, g2) if and only if there exist a,b € R such that

b2+ WA(WL(f?))
2WL(f?) +af?g2’

EWQQQ ==

provided that 2W1(f?) + af? # 0.
Proof. From [13], for all U = U; + U and V =V} + V5 we have
(LwLwg)(U,V) = (Lw,Lw,91)(U1, V1) + f*(Lw,Lw,g2) (U2, V2)
+ 2W(f*)(Lwog2) Uz, Vo) + Wi(Wi(f?))g2(Us, Va).
Since, W is a 2-Killing vector field, then
(‘CWl[’ngl) = 07
FA(Lw, Lw,g2) + 2W1(f2)(Lw,g2) + WiWL(f)) =0, (5)

If W1 be a metallic vector field, then there exist real scalars a and b, such that

£W1£W1 g1 = CLﬁVV1 g1 + bg1,

hence, we have aLlw, g1 + bg1 = 0. If a # 0, then
-b 2
Ly, g1 = = Ly, Ly, g1 = 39

Therefore b = 0 and we get the conclusion.
Similarly, if W5 be a metallic vector field, then there exist real scalars a and b,
such that

Lw,Lw,92 = aLw,g2 + bga.

Now, this formula beside (5), gives

F2(alw,gs + bga) + 2W1(f*)(Lw,g2) + WiWi(f))g2 = 0,
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S0,
bR WA(WA(f?)
2W1(f?) + af?

Z:WQ g2 = gs.

O

Proposition 4.2. When manifold My x; My admits a metallic vector field W =
W1 + Wy with parameters a,b, then:

(i) Wy is a metallic vector field on (M, g1).

(i) Wy is a metallic vector field on (Maz, g2) if and only if

W, (ln ,f) and W1(V][fl(f))7
be constants.

Proof. From [13], we can write

(Lwg)(U,V) = (Lw,g1) (U1, V1) + 2 (Lw,92)(Uz, Va) + Wi (f?)g2(Ua, Va),

for every vector field Uy, V; tangent to M;. At this point, the conclusion derives
from (1), along with the formulation of the second Lie derivative of g as outlined
below.

There exist scalars a and b such that

so, we get

(Lw, Lw, 91) (U1, Vi) + [2(Lw, Lw,g2) (U2, Va) + 2X1(f2) (Lw,g2)(Ua, Va)
WL (W1 (£?))g2(Uz, V2) =
a((Lw,91) (U1, Vi) + f2(Lw,g2)(Ua, Va) + Wi(f2)g2(Ua, V2))
+bg1(U1, V1) + bf?ga(Us, V),

for all vector fields U;, V; tangent to M;. Hence, we have

Lw,Lw,g = alw,g+ by,
PPLw,Lwnge = (af? = 2X1(f%) Lwngs + (bf* + Wi(f?) — Wi(W1i(f?)))go.

The above equations indicate that W; is a metallic vector field on (M, g1), and
Wy is metallic field on (Ma, g2) if and only if

Wi(f?) Wi (Wi(f))
f? f ’

be constants. O

= Wl(lnf)a

Remark 1. Let the warping function f be constant. When M; x M, admits a
metallic vector field W = W; 4+ W5, then W; are metallic fields over M;.
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Example 4.3. If vector field W = k% + U is metallic on the warped product
Robertson-Walker spacetime (I x ; R?), where k € R and

f:I—R, ft) = ecrttez c1,00 € R,
then U is a metallic vector field on (R3, gean), by means of Proposition 4.2.
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