

Characterization of Approximate a -Birkhoff-James Orthogonality in C^* -Algebras

*Mahdi Dehghani**^{ID} and *Hooriye Sadat Jalali Ghamsari*

Abstract

Assume that \mathcal{A} is a unital C^* -algebra and $a \in \mathcal{A}$ is a positive and invertible element. Set

$$\mathcal{S}_a(\mathcal{A}) = \left\{ \frac{f}{f(a)} : f \in \mathcal{S}(\mathcal{A}), f(a) \neq 0 \right\},$$

where $\mathcal{S}(\mathcal{A})$ is the state space of \mathcal{A} .

The main aim of this paper is to introduce and study the notions of approximate a -orthogonality and approximate a -Birkhoff-James orthogonality associated to the norm:

$$\|x\|_a = \sup_{\varphi \in \mathcal{S}_a(\mathcal{A})} \sqrt{\varphi(x^*ax)} \quad (x \in \mathcal{A}),$$

in C^* -algebra \mathcal{A} . First, by providing some examples, we show that these approximate orthogonalities are generally incomparable in non-commutative C^* -algebras. Next, we will see that under what conditions, these orthogonality relationships are related. Also, two different characterizations of approximate a -Birkhoff-James orthogonality in terms of the elements of $\mathcal{S}_a(\mathcal{A})$ are obtained. Moreover, the strong version of approximate a -Birkhoff-James orthogonality is studied. Finally, we prove that if approximate a -Birkhoff-James orthogonality and its strong version coincide on \mathcal{A} , then \mathcal{A} is commutative.

Keywords: C^* -algebra, State space of C^* -algebra, Approximate orthogonality, Approximate a -Birkhoff-James orthogonality.

2020 Mathematics Subject Classification: 46L05; 46B28.

*Corresponding author (E-mail: m.dehghani@yazd.ac.ir, e.g.mahdi@gmail.com)

Academic Editor: Abbas Saadatmandi

Received 28 January 2025, Accepted 21 April 2025

DOI: 10.22052/MIR.2025.256282.1501

© 2026 University of Kashan

 This work is licensed under the Creative Commons Attribution 4.0 International License.

How to cite this article

M. Dehghani and H. S. Jalali Ghamsari, Characterization of approximate a -Birkhoff-James orthogonality in C^* -algebras, *Math. Interdisc. Res.* **11** (1) (2026) 15-30.

1. Introduction and preliminaries

Let \mathcal{A} be a unital C^* -algebra with unit $1_{\mathcal{A}}$, and let \mathcal{A}' be the topological dual space of \mathcal{A} . The adjoint of element $x \in \mathcal{A}$ is denoted by x^* . Also, the real part of x is denoted by $\text{Re}(x) = \frac{1}{2}(x + x^*)$. We denote the cone of positive elements of \mathcal{A} by \mathcal{A}^+ . A linear functional $f \in \mathcal{A}'$ is called positive if $f(a) \geq 0$ for all $a \in \mathcal{A}^+$.

The set of all positive linear functionals $f \in \mathcal{A}'$ such that $\|f\| = 1$ is denoted by $\mathcal{S}(\mathcal{A})$ and it is called state space of \mathcal{A} . Let $a \in \mathcal{A}^+$. A generalization of $\mathcal{S}(\mathcal{A})$ is proposed in [1] as the set

$$\mathcal{S}_a(\mathcal{A}) := \{\varphi \in \mathcal{A}' : \varphi \geq 0, \varphi(a) = 1\}.$$

Obviously, $\mathcal{S}_a(\mathcal{A}) = \mathcal{S}(\mathcal{A})$, whenever $a = 1_{\mathcal{A}}$. According to [1, Proposition 2.3], if a is invertible, then $\mathcal{S}_a(\mathcal{A})$ is w^* -compact and

$$\|x\|_a := \sup\{\sqrt{\varphi(x^*ax)} : \varphi \in \mathcal{S}_a(\mathcal{A})\}, \quad (x \in \mathcal{A}),$$

is a sub-multiplicative norm on \mathcal{A} . Moreover, it was proved in [1] the following result:

Proposition 1.1. ([1, Lemma 3.1]). *For any $x \in \mathcal{A}$ and $a \in \mathcal{A}^+$ such that $xa = ax$, we have $\|x\|_a \leq \|x\|$.*

The a -adjoint of $x \in \mathcal{A}$ is the element $x^\sharp \in \mathcal{A}$ such that $ax^\sharp = x^*a$. It was proved in [1, Corollary 4.9] that

$$\|x\|_a^2 = \|xx^\sharp\|_a = \|x^\sharp x\|_a = \|x^\sharp\|_a^2. \quad (1)$$

Further details regarding these concepts can be found in previous studies by [1, 2].

The concept of Birkhoff-James orthogonality (briefly, BJ-orthogonality) provide a good framework for studying the geometry of operator spaces; see e.g., [3–7] and the references therein. In particular, BJ-orthogonality in C^* -algebras and Hilbert C^* -modules has been studied extensively in [8–13].

Let $\varepsilon \in [0, 1)$. In inner product space $(X, \langle \cdot, \cdot \rangle)$, a natural way to generalize orthogonality is to define the approximate orthogonality by: $x \perp_{\varepsilon} y$ if and only if $|\langle x, y \rangle| \leq \varepsilon \|x\| \|y\|$ ($x, y \in X$); see [14]. Based on this idea, for elements x and y in unital C^* -algebra \mathcal{A} , approximate orthogonality with respect to the \mathcal{A} -valued inner product $\langle x, y \rangle = x^*y$ (ε -orthogonality) is established by $\|\langle x, y \rangle\| \leq \varepsilon \|x\| \|y\|$ [12]. Chmieliński et al. in [14–17] introduced and studied the concept of

approximate Birkhoff-James orthogonality (ε -BJ-orthogonality) in normed linear spaces. Accordingly, $x \in \mathcal{A}$ is said to be approximate Birkhoff-James orthogonal to $y \in \mathcal{A}$, written as $x \perp_{BJ-\varepsilon} y$, if

$$\|x + \lambda y\|^2 \geq \|x\|^2 - 2\varepsilon\|x\|\|\lambda y\| \quad (\forall \lambda \in \mathbb{C}).$$

Approximate BJ-orthogonality of Hilbert space operators, and operators on C^* -algebras and Hilbert C^* -modules are widely studied in [12, 17–19]. Also, approximate BJ-orthogonality of operators on semi-Hilbert spaces is investigated in [20, 21].

Recently, the concept of BJ-orthogonality associated to $\|\cdot\|_a$ in unital C^* -algebra \mathcal{A} , so called a -Birkhoff-James orthogonality, has been investigated in [22]. In this paper, we consider approximate a -orthogonality and approximate a -BJ-orthogonality in \mathcal{A} . By presenting some interesting examples, we describe the relation between these orthogonality relationships. In particular, we show that approximate a -orthogonality implies approximate a -Birkhoff-James orthogonality, provided that $a \geq 1_{\mathcal{A}}$. Next, two different characterizations of approximate a -BJ-orthogonality based on the elements of $\mathcal{S}_a(\mathcal{A})$ are obtained. Moreover, the strong version of approximate a -BJ-orthogonality in unital C^* -algebras is studied. In particular, we prove that if these two concepts of orthogonality are coincide on \mathcal{A} , then \mathcal{A} is commutative.

2. Approximate a -Birkhoff-James orthogonality in C^* -algebras

Throughout the paper, we suppose that \mathcal{A} is a unital C^* -algebra with unit $1_{\mathcal{A}}$ and $a \in \mathcal{A}^+$ is invertible. Also, for any $x, y \in \mathcal{A}$, we define \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle_a : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ by $\langle x, y \rangle_a := x^*ay$.

First we introduce the notions of approximate a -orthogonality and approximate a -BJ-orthogonality related to $\|\cdot\|_a$ in \mathcal{A} .

Definition 2.1. For $\varepsilon \in [0, 1)$, we say that an element $x \in \mathcal{A}$ is approximate a -orthogonal ((ε, a) -orthogonal) to element $y \in \mathcal{A}$, denoted by $x \perp_{\varepsilon}^a y$, if

$$\|\langle x, y \rangle_a\|_a \leq \varepsilon \|x\|_a \|y\|_a.$$

Note that $(\varepsilon, 1_{\mathcal{A}})$ -orthogonality coincides with ε -orthogonality.

Definition 2.2. For $\varepsilon \in [0, 1)$, we say that an element $x \in \mathcal{A}$ is approximate a -Birkhoff-James orthogonal ((ε, a) -BJ-orthogonal) to element $y \in \mathcal{A}$, in short $x \perp_{BJ-\varepsilon}^a y$, if

$$\|x + \lambda y\|_a^2 \geq \|x\|_a^2 - 2\varepsilon\|x\|_a\|\lambda y\|_a, \quad (\forall \lambda \in \mathbb{C}).$$

Note that $(\varepsilon, 1_{\mathcal{A}})$ -BJ-orthogonality matches with ε -BJ-orthogonality. Also, Clearly, if $\varepsilon = 0$, then the above definition coincides with the definition of a -Birkhoff-James orthogonality which is defined and studied in [22].

Proposition 2.3. *For any $x, y \in \mathcal{A}$, the following statements hold:*

- (i) *For $\varepsilon \in [0, \frac{1}{2})$, (ε, a) -BJ-orthogonality is non-degenerated,*
- (ii) *(ε, a) -BJ-orthogonality is homogenous,*
- (iii) *$x \perp_{BJ-\varepsilon}^a y$ if and only if $x^\sharp \perp_{BJ-\varepsilon}^a y^\sharp$,*
- (iv) *Let $x, y \in \mathcal{A}$ be nonzero elements. If $x \perp_{BJ-\varepsilon}^a y$, then x, y are linearly independent.*

Proof. (i) If $x \in \mathcal{A}$ such that $x \perp_{BJ-\varepsilon}^a x$, then $\|x + \lambda x\|_a^2 \geq \|x\|_a^2 - 2\varepsilon|\lambda|\|x\|_a^2$ for all $\lambda \in \mathbb{C}$. Let $\lambda = -1$. Then we get $\|x\|_a^2(1 - 2\varepsilon) \leq 0$, and hence $\|x\|_a^2 = 0$, since $\varepsilon \in [0, \frac{1}{2})$. Thus $x = 0$.

(ii) Assume that $x \perp_{BJ-\varepsilon}^a y$. Let $\alpha, \beta \in \mathbb{C}$ such that $\alpha \neq 0$. Then

$$\begin{aligned} \|\alpha x + \lambda \beta y\|_a^2 &= \|\alpha(x + \lambda \frac{\beta}{\alpha} y)\|_a^2 = |\alpha|^2 \|x + \lambda \frac{\beta}{\alpha} y\|_a^2 \\ &\geq |\alpha|^2 (\|x\|_a^2 - 2\varepsilon|\lambda|\|x\|_a\|\frac{\beta}{\alpha} y\|_a) \\ &= \|\alpha x\|_a^2 - 2\varepsilon|\lambda|\|\alpha x\|_a\|\beta y\|_a, \end{aligned}$$

for all $\lambda \in \mathbb{C}$. It follows that $\alpha x \perp_{BJ-\varepsilon}^a \beta y$.

(iii) Assume that $x \perp_{BJ-\varepsilon}^a y$. So, by (1), we get

$$\begin{aligned} \|x^\sharp + \lambda y^\sharp\|_a^2 &= \|(x + \bar{\lambda}y)^\sharp\|_a^2 = \|x + \bar{\lambda}y\|_a^2 \\ &\geq \|x\|_a^2 - 2\varepsilon|\lambda|\|x\|_a\|y\|_a = \|x^\sharp\|_a^2 - 2\varepsilon|\lambda|\|x^\sharp\|_a\|y^\sharp\|_a, \end{aligned} \tag{2}$$

for all $\lambda \in \mathbb{C}$. Therefore $x^\sharp \perp_{BJ-\varepsilon}^a y^\sharp$. Also, (2) immediately follows the converse.

(iv) As a contrary, suppose that $x \perp_{BJ-\varepsilon}^a y$, but x, y are not linearly independent. Hence $x = ky$ for some $k \in \mathbb{C}$. Then

$$\|ky + \lambda y\|_a^2 \geq \|ky\|_a^2 - 2\varepsilon\|ky\|_a\|\lambda y\|_a, \quad (\forall \lambda \in \mathbb{C}),$$

and so

$$|k + \lambda|^2 \|y\|_a^2 \geq \|y\|_a^2 (|k|^2 - 2\varepsilon|k|\|\lambda\|), \quad (\forall \lambda \in \mathbb{C}).$$

Since $\|y\|_a \neq 0$, we get $|k + \lambda|^2 \geq |k|^2 - 2\varepsilon|k|\|\lambda\|$ for all $\lambda \in \mathbb{C}$. Let $\lambda = \frac{-k}{2^n}$ ($n \in \mathbb{N}$). Hence

$$|k|^2 (1 - \frac{1}{2^n})^2 \geq |k|^2 (1 - \frac{\varepsilon}{2^{n-1}}).$$

Consequently,

$$\varepsilon \geq (1 - (1 - \frac{1}{2^n})^2) 2^{n-1} = 1 - \frac{1}{2^{n+1}} \quad (n \in \mathbb{N}). \tag{3}$$

On the other hand, $\lim_{n \rightarrow \infty} (1 - \frac{1}{2^{n+1}}) = 1$. Therefore (3) implies that $\varepsilon \geq 1$, which is impossible. \square

Remark 1. Let $x \in \mathcal{A}$. Then $x^\sharp = a^{-1}x^*a$ is a unique a -adjoint of x . Hence (1) implies that

$$\|x\|_a^2 = \|a^{-1}x^*ax\|_a^2 = \|xa^{-1}x^*a\|_a = \|a^{-1}x^*a\|_a^2.$$

As a consequence of this fact, if \mathcal{A} is commutative, then

$$\|x\|_a^2 = \|x^*x\|_a^2 = \|xx^*\|_a = \|x^*\|_a^2.$$

Therefore $\|\cdot\|_a$ coincides with the C^* -norm of \mathcal{A} , and so (ε, a) -orthogonality and ε -orthogonality are the same. Also, (ε, a) -BJ-orthogonality and ε -BJ-orthogonality are matched.

It is known that $\perp_\varepsilon \subseteq \perp_{BJ-\varepsilon}$ (see [12, Proposition 3.1]). The following example demonstrates that there is no such a relationship between \perp_ε^a and $\perp_{BJ-\varepsilon}^a$, in general.

Example 2.4. Let Tr be the trace functional on C^* -algebra of all 2×2 complex matrices $\mathbb{M}_2(\mathbb{C})$ with identity matrix I_2 as unit. Consider the positive linear functional φ_h is defined by

$$\varphi : \mathbb{M}_2(\mathbb{C}) \rightarrow \mathbb{C}, \quad \varphi_h(x) = \text{Tr}(hx) \quad (h \in \mathbb{M}_2(\mathbb{C})^+).$$

Then for each $a \in \mathbb{M}_2(\mathbb{C})^+$, we have

$$\mathcal{S}_a(\mathbb{M}_2(\mathbb{C})) = \{\varphi_h : h \in \mathbb{M}_2(\mathbb{C})^+ \text{ and } \text{Tr}(ha) = 1\}.$$

First we consider the matrix $a = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$ and assume that $\varepsilon \in [\frac{1}{4}, \frac{1}{2})$. We show that there are $x, y \in \mathbb{M}_2(\mathbb{C})$ such that $x \perp_\varepsilon^a y$, but $x \not\perp_{BJ-\varepsilon}^a y$. After some simple matrix computations, we conclude that

$$\mathcal{S}_a(\mathbb{M}_2(\mathbb{C})) = \{\varphi_h : h \in \mathcal{K}_a\},$$

where

$$\mathcal{K}_a := \left\{ h = \begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} \in \mathbb{M}_2(\mathbb{C})^+ : h_{12} \in \mathbb{C}, h_{11}, h_{22} \geq 0, \frac{1}{4}h_{11} + \frac{1}{5}h_{22} = 1 \right\}.$$

Let $x = y = I_2$. Then $\|x\|_a = 1$ and $\|y\|_a = 1$. Moreover, we have

$$\begin{aligned} \|\langle x, y \rangle_a\|_a^2 &= \|x^*ay\|_a^2 = \|a\|_a^2 = \sup_{\varphi_h \in \mathcal{S}_a(\mathbb{M}_2(\mathbb{C}))} \varphi_h(a^3) \\ &= \sup_{h \in \mathcal{K}_a} \text{Tr} \left(\begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} \frac{1}{64} & 0 \\ 0 & \frac{1}{125} \end{bmatrix} \right) \\ &= \sup_{\frac{1}{4}h_{11} + \frac{1}{5}h_{22} = 1, h_{11}, h_{22} \geq 0} \frac{1}{64}h_{11} + \frac{1}{125}h_{22} = \frac{1}{16}. \end{aligned}$$

Then

$$\|\langle x, y \rangle_a\|_a = \frac{1}{4} \leq \varepsilon \|x\|_a \|y\|_a = \varepsilon.$$

Therefore $x \perp_{\varepsilon}^a y$. On the other hand, for $\lambda = -1$, we have

$$\|x + \lambda y\|_a^2 = 0 < 1 - 2\varepsilon|\lambda| \|x\|_a \|y\|_a = 1 - 2\varepsilon.$$

It follows that $x \not\perp_{BJ-\varepsilon}^a y$.

Now, let $a = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and let $\varepsilon \in [0, 1)$. We prove that there are $x, y \in \mathbb{M}_2(\mathbb{C})$ such that $x \perp_{BJ-\varepsilon}^a y$ while $x \not\perp_{\varepsilon}^a y$. To this end, note that

$$\mathcal{S}_a(\mathbb{M}_2(\mathbb{C})) = \{\varphi_h : h \in \mathcal{L}_a\},$$

where

$$\mathcal{L}_a := \left\{ h = \begin{bmatrix} h_{11} & h_{12} \\ \bar{h}_{12} & h_{22} \end{bmatrix} \in \mathbb{M}_2(\mathbb{C})^+ : h_{12} \in \mathbb{C}, h_{11}, h_{22} \geq 0, 2h_{11} + h_{22} = 1 \right\}.$$

Take $x = I_2$ and $y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then $\|x\|_a = 1$ and

$$\begin{aligned} \|y\|_a^2 &= \sup_{\varphi_h \in \mathcal{S}_a(\mathbb{M}_2(\mathbb{C}))} \varphi_h(y^* a y) = \sup_{h \in \mathcal{L}_a} \text{Tr}(h(y^* a y)) \\ &= \sup_{h \in \mathcal{L}_a} \text{Tr} \left(\begin{bmatrix} h_{11} & 0 \\ 0 & 0 \end{bmatrix} \right) = \sup_{2h_{11} + h_{22} = 1, h_{11}, h_{22} \geq 0} h_{11} = \frac{1}{2}. \end{aligned}$$

Hence for every $\lambda \in \mathbb{C}$, we have

$$\begin{aligned} \|x + \lambda y\|_a^2 &= \sup_{\varphi_h \in \mathcal{S}_a(\mathbb{M}_2(\mathbb{C}))} \varphi_h((x + \lambda y)^* a (x + \lambda y)) \\ &= \sup_{h \in \mathcal{L}_a} \text{Tr} \left(\begin{bmatrix} h_{11} & h_{12} \\ \bar{h}_{12} & h_{22} \end{bmatrix} \begin{bmatrix} 2 + |\lambda|^2 & \bar{\lambda} \\ \lambda & 1 \end{bmatrix} \right) \\ &= \sup_{2h_{11} + h_{22} = 1, h_{11}, h_{22} \geq 0} ((2 + |\lambda|^2)h_{11} + 2\text{Re}(\lambda h_{12}) + h_{22}) \\ &\geq 1 + \frac{|\lambda|^2}{2} \geq 1 = \|x\|_a^2, \end{aligned}$$

since $h_0 = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{L}_a$. Then

$$\|x + \lambda y\|_a^2 \geq \|x\|_a^2 \geq \|x\|_a^2 - 2\varepsilon|\lambda| \|x\|_a \|y\|_a,$$

for all $\varepsilon \in [0, 1)$, and so $x \perp_{BJ-\varepsilon}^a y$. But $x \not\perp_{\varepsilon}^a y$. In fact,

$$\begin{aligned} \|\langle x, y \rangle_a\|_a^2 &= \|x^*ay\|_a^2 = \left\| \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\|_a^2 \\ &= \sup_{h \in \mathcal{L}_a} \text{Tr} \left(\begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) \\ &= \sup_{2h_{11}+h_{22}=1, h_{11}, h_{22} \geq 0} h_{11} = \frac{1}{2}. \end{aligned}$$

Therefore, if

$$\|\langle x, y \rangle_a\|_a = \frac{1}{\sqrt{2}} \leq \varepsilon \frac{1}{\sqrt{2}},$$

then $\varepsilon \geq 1$, which is not possible.

In the next result, we will see under what circumstances, the concept of (ε, a) -orthogonality and (ε, a) -BJ-orthogonality are related.

Theorem 2.5. *Assume that $\varepsilon \in (0, 1)$. Let $x, y \in \mathcal{A}$ and let $a \in \mathcal{A}$ such that $a \geq 1_{\mathcal{A}}$. If $x \perp_{\varepsilon}^a y$, then $x \perp_{BJ-\varepsilon}^a ya$.*

Proof. Note that since $aa^{-1} = a^{-1}a = 1_{\mathcal{A}}$ and $a \geq 1_{\mathcal{A}}$, by [Proposition 1.1](#), we conclude that $\|a^{-1}\|_a \leq \|a^{-1}\| \leq 1$. Hence

$$\|y\|_a = \|ya a^{-1}\|_a \leq \|ya\|_a \|a^{-1}\|_a \leq \|ya\|_a. \quad (4)$$

Now, let $\varphi \in \mathcal{S}_a(\mathcal{A})$ so that $\varphi(\langle x, x \rangle_a) = \|x\|_a^2$ and let $b \in \mathcal{A}$ be an arbitrary element. So by (4) and the Cauchy-Schwartz inequality, for any $\lambda \in \mathbb{C}$, we have

$$\begin{aligned} \|x + \lambda ya\|_a^2 &\geq \varphi((x + \lambda ya)^*a(x + \lambda ya)) \\ &= \varphi(\langle x, x \rangle_a) + \varphi(\langle x, \lambda ya \rangle_a) + \varphi(\langle \lambda ya, x \rangle_a) + |\lambda|^2 \varphi(\langle ya, ya \rangle_a) \\ &\geq \varphi(x^*ax) + 2\text{Re}\varphi(\langle x, \lambda ya \rangle_a) \\ &= \|x\|_a^2 + 2\text{Re}\varphi(\langle x, \lambda ya \rangle_a) \\ &\geq \|x\|_a^2 - 2|\text{Re}\varphi(\langle x, \lambda ya \rangle_a)| \\ &\geq \|x\|_a^2 - 2|\varphi(\langle x, \lambda ya \rangle_a)| \\ &\geq \|x\|_a^2 - 2|\lambda| \varphi^{\frac{1}{2}}(\langle x, y \rangle_a a \langle y, x \rangle_a) \varphi^{\frac{1}{2}}(a) \\ &\geq \|x\|_a^2 - 2|\lambda| \|\langle x, y \rangle_a\|_a \\ &\geq \|x\|_a^2 - 2\varepsilon|\lambda| \|x\|_a \|y\|_a \\ &\geq \|x\|_a^2 - 2\varepsilon|\lambda| \|x\|_a \|ya\|_a. \end{aligned}$$

Therefore $x \perp_{BJ-\varepsilon}^a ya$. \square

Let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators on a complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Any $A \in \mathcal{B}(\mathcal{H})^+$ produces a positive semi-definite sesquilinear form on H as follows:

$$\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}, \quad \langle x, y \rangle_A = \langle Ax, y \rangle.$$

Also, the semi-norm

$$\|x\|_A = \sqrt{\langle Ax, x \rangle} \quad (x \in \mathcal{H}),$$

is induced on H by $\langle \cdot, \cdot \rangle_A$ cf. [23]. In addition, the set

$$\mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H}) := \{T \in \mathcal{B}(\mathcal{H}) : \exists c > 0, \|Tx\|_A \leq c\|x\|_A, \quad \forall x \in \mathcal{H}\},$$

is a unital subalgebra of $\mathcal{B}(\mathcal{H})$ furnished with the semi-norm

$$\gamma_A(T) := \sup_{\|x\|_A=1} \sqrt{\langle ATx, Tx \rangle} \quad (T \in \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})).$$

Let (\mathcal{H}_f, π_f) be the GNS representation associated to $f \in \mathcal{S}_a(\mathcal{A})$; see e.g., [24, 25]. In [1] the authors presented the unital faithful $*$ -representation π_a for \mathcal{A} as the orthogonal direct sum of all (\mathcal{H}_f, π_f) , where f ranges over $\mathcal{S}_a(\mathcal{A})$; i.e.,

$$\pi_a = \bigoplus_{f \in \mathcal{S}_a(\mathcal{A})} \pi_f : \mathcal{A} \mapsto \mathcal{B}\left(\bigoplus_{f \in \mathcal{S}_a(\mathcal{A})} \mathcal{H}_f\right).$$

In particular, it was proved in [1, Theorem 3.5] that

$$\|x\|_a = \gamma_{\pi_a(a)}(\pi_a(x)) \quad (x \in \mathcal{A}). \quad (5)$$

Sen et al. in [20, 21] introduced the notion of approximate orthogonality with respect to the semi-norm $\gamma_A(\cdot)$ for positive operator $A \in \mathcal{B}(\mathcal{H})$. The following characterization of (ε, A) -BJ-approximate orthogonality is obtained in [20, 21].

Theorem 2.6. *Let $T, S \in \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$ and $\varepsilon \in [0, 1)$. Then $T \perp_{BJ-\varepsilon}^A S$ if and only if for each $\theta \in [0, 2\pi)$, there is a sequence $\{h_n\} \subset \mathcal{H}$ of A -unit vectors ($\|h_n\|_A = 1$) such that the following conditions hold:*

- (i) $\lim_{n \rightarrow \infty} \|Th_n\|_A = \gamma_A(T)$,
- (ii) $\lim_{n \rightarrow \infty} \operatorname{Re}(e^{-i\theta} \langle Th_n, Sh_n \rangle_A) \geq -\varepsilon \gamma_A(T) \gamma_A(S)$.

Theorem 2.7. *For any $x, y \in \mathcal{A}$, the following statements are equivalent:*

- (i) $x \perp_{BJ-\varepsilon}^a y$,
- (ii) There exists $\varphi \in \mathcal{S}_a(\mathcal{A})$ such that
 - (ii - 1) $\varphi(x^*ax) = \|x\|_a^2$,
 - (ii - 2) $\operatorname{Re}(e^{-i\theta} \varphi(y^*ax)) \geq -\varepsilon \|x\|_a \|y\|_a$ ($\operatorname{Re}(e^{-i\theta} \varphi(x^*ay)) \geq -\varepsilon \|x\|_a \|y\|_a$).

Proof. (i) \Rightarrow (ii) Assume that $x \perp_{BJ-\varepsilon}^a y$. Hence $\pi_a(x), \pi_a(y) \in \mathcal{B}_{\pi_a(a)^{\frac{1}{2}}}(\mathcal{H})$, and so $\pi_a(x) \perp_{BJ-\varepsilon}^{\pi_a(a)} \pi_a(y)$. So, [Theorem 2.6](#) yields that for each $\theta \in [0, 2\pi)$ there exists a sequence of $\pi_a(a)$ -unit vectors $\{h_n\} \subset \mathcal{H}$ such that

$$\lim_{n \rightarrow \infty} \|\pi_a(x)h_n\|_{\pi_a(a)} = \gamma_{\pi_a(a)}(\pi_a(x)), \quad (6)$$

and

$$\lim_{n \rightarrow \infty} \operatorname{Re}(e^{-i\theta} \langle \pi_a(x)h_n, \pi_a(y)h_n \rangle_{\pi_a(a)}) \geq -\varepsilon \gamma_{\pi_a(a)}(\pi_a(x)) \gamma_{\pi_a(a)}(\pi_a(y)). \quad (7)$$

The linear functionals

$$\varphi_n(z) = \langle \pi_a(z)h_n, h_n \rangle \quad (n \in \mathbb{N}),$$

belong to $\mathcal{S}_a(\mathcal{A})$. Now, (6) and (7), respectively, imply that

$$\begin{aligned} \lim_{n \rightarrow \infty} \varphi_n(x^*ax) &= \lim_{n \rightarrow \infty} \langle \pi_a(x^*ax)h_n, h_n \rangle = \lim_{n \rightarrow \infty} \langle \pi_a(a)\pi_a(x)h_n, \pi_a(x)h_n \rangle \\ &= \lim_{n \rightarrow \infty} \|\pi_a(x)(h_n)\|_{\pi_a(a)}^2 = \gamma_{\pi_a(a)}^2(\pi_a(x)) = \|x\|_a^2, \end{aligned}$$

and

$$\begin{aligned} \lim_{n \rightarrow \infty} \operatorname{Re}(e^{-i\theta} \varphi_n(y^*ax)) &= \lim_{n \rightarrow \infty} \operatorname{Re}(e^{-i\theta} \langle \pi_a(y^*ax)h_n, h_n \rangle) \\ &= \lim_{n \rightarrow \infty} \operatorname{Re}(e^{-i\theta} \langle \pi_a(a)\pi(x)h_n, \pi_a(y)h_n \rangle) \\ &= \lim_{n \rightarrow \infty} \operatorname{Re}(e^{-i\theta} \langle \pi_a(x)h_n, \pi_a(y)h_n \rangle_{\pi_a(a)}) \\ &\geq -\varepsilon \gamma_{\pi_a(a)}(\pi_a(x)) \gamma_{\pi_a(a)}(\pi_a(y)) = -\varepsilon \|x\|_a \|y\|_a. \end{aligned}$$

On the other hand, invertibility of a implies that $\mathcal{S}_a(\mathcal{A})$ is w^* -compact. So, one can find $\varphi \in \mathcal{S}_a(\mathcal{A})$ such that $\varphi_n \xrightarrow{w^*} \varphi$. Therefore $\varphi(x^*ax) = \|x\|_a^2$ and $\operatorname{Re}(e^{-i\theta} \varphi(y^*ax)) \geq -\varepsilon \|x\|_a \|y\|_a$.

(ii) \Rightarrow (i) Let $\lambda = |\lambda|e^{-i\theta}$ for some $\theta \in [0, 2\pi)$. Then there is $\varphi \in \mathcal{S}_a(\mathcal{A})$ for which $\varphi(x^*ax) = \|x\|_a^2$ and $\operatorname{Re}(e^{-i\theta} \varphi(y^*ax)) \geq -\varepsilon \|x\|_a \|y\|_a$. Therefore

$$\begin{aligned} \|x + \lambda y\|_a^2 &\geq \varphi((x + \lambda y)^*a(x + \lambda y)) \\ &= \varphi(\langle x, x \rangle_a) + 2|\lambda|e^{-i\theta} \operatorname{Re}(\varphi \langle x, y \rangle_a) + |\lambda|^2 \varphi(\langle y, y \rangle_a) \\ &\geq \varphi(\langle x, x \rangle_a) + 2|\lambda| \operatorname{Re}(e^{-i\theta} \varphi \langle x, y \rangle_a) \\ &\geq \varphi(\langle x, x \rangle_a) - 2\varepsilon |\lambda| \|x\|_a \|y\|_a = \|x\|_a^2 - 2\varepsilon |\lambda| \|x\|_a \|y\|_a. \end{aligned}$$

Thus $x \perp_{BJ-\varepsilon}^a y$. □

Zamani in [\[7\]](#) was shown that if $T, S \in \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$, then the set

$$W_A(T, S) := \{\lambda \in \mathbb{C} : \exists \{h_n\} \subset \mathcal{H}, \|h_n\|_A = 1, \langle Th_n, Sh_n \rangle_A \rightarrow \lambda, \|Th_n\|_A \rightarrow \gamma_A(T)\},$$

is a nonempty compact and convex subset of \mathbb{C} . Moreover, it was proved in [\[20\]](#) that

Theorem 2.8. ([20, Theorem 2.1]). Let \mathcal{H} be a Hilbert space, $A \in \mathcal{B}(\mathcal{H})^+$ and $T, S \in \mathcal{B}_{A^{\frac{1}{2}}}(\mathcal{H})$. Then for each $\varepsilon \in [0, 1)$, the following statements are equivalent:

- (i) $T \perp_{BJ-\varepsilon}^A S$,
- (ii) $W_A(T, S) \cap B(0, \varepsilon \gamma_A(T) \gamma_A(S)) \neq \emptyset$.

We end this section by presenting the following characterization of the (ε, a) -BJ-orthogonality in terms of the elements of $\mathcal{S}_a(\mathcal{A})$.

Theorem 2.9. Let $x, y \in \mathcal{A}$ and let $\varepsilon \in [0, 1)$. Then the following statements are equivalent:

- (i) $x \perp_{BJ-\varepsilon}^a y$,
- (ii) There is $\varphi \in \mathcal{S}_a(\mathcal{A})$ so that $\varphi(x^*ax) = \|x\|_a^2$ and $|\varphi(\langle x, y \rangle_a)| \leq \varepsilon \|x\|_a \|y\|_a$.

Proof. Let

$$W_a(x, y) := \{\lambda \in \mathbb{C} : \exists \varphi \in \mathcal{S}_a(\mathcal{A}), \varphi(y^*ax) = \lambda, \varphi(x^*ax) = \|x\|_a^2\}.$$

By (5) and Theorem 2.8, it is sufficient to show that $W_a(x, y) = W_{\pi_a(a)}(\pi_a(x), \pi_a(y))$. Assume that $\lambda \in W_{\pi_a(a)}(\pi_a(x), \pi_a(y))$. Then there exists a sequence $\{h_n\} \subset \mathcal{H}$ of $\pi_a(a)$ -unit vectors such that

$$\langle \pi_a(x)h_n, \pi_a(y)h_n \rangle_{\pi_a(a)} = \lambda, \|\pi_a(x)h_n\|_{\pi_a(a)} \rightarrow \gamma_{\pi_a(a)}(\pi_a(x)).$$

So

$$\langle \pi_a(y^*ax)h_n, h_n \rangle = \lambda, \langle \pi_a(x^*ax)h_n, h_n \rangle \rightarrow \gamma_{\pi_a(a)}(\pi_a(x)).$$

Hence for the linear functionals $\varphi_n(z) = \langle \pi_a(z)h_n, h_n \rangle$ defined on \mathcal{A} , we have

$$\varphi_n(y^*ax) \rightarrow \lambda \text{ and } \varphi_n(x^*ax) = \|x\|_a^2.$$

But, one can find $\varphi \in \mathcal{S}_a(\mathcal{A})$ such that $\varphi_n \xrightarrow{w^*} \varphi$, which follows that $\lambda \in W_a(x, y)$.

Now, let $\lambda \in W_a(x, y)$. So there is $f \in \mathcal{S}_a(\mathcal{A})$ such that

$$f(y^*ax) = \lambda \text{ and } f(x^*ax) = \|x\|_a^2.$$

Also, Lemma 2.4 of [1] implies that there exists a $*$ -representation (\mathcal{H}_f, π_f) and a unique cyclic vector $h_f \in \mathcal{H}_f$ such that $\langle \pi_f(a)h_f, h_f \rangle = 1$ and $f(z) = \langle \pi_f(z)h_f, h_f \rangle$ for all $z \in \mathcal{A}$. Let $h := \bigoplus_{g \in \mathcal{S}_a(\mathcal{A})} h_g \in \bigoplus_{g \in \mathcal{S}_a(\mathcal{A})} \mathcal{H}_g$ be such that all h_g are zero, except h_f . Then we have

$$\|h\|_{\pi_a(a)} = \langle \pi_a(a)h, h \rangle = \sum_{g \in \mathcal{S}_a(\mathcal{A})} \langle \pi_g(a)h_g, h_g \rangle = \langle \pi_f(a)h_f, h_f \rangle = 1,$$

and

$$\begin{aligned} \langle \pi_a(x)h, \pi_a(y)h \rangle_{\pi_a(a)} &= \langle \pi_a(a)\pi_a(x)h, \pi_a(y)h \rangle = \langle \pi_a(y^*ax)h, h \rangle \\ &= \sum_{g \in \mathcal{S}_a(\mathcal{A})} \langle \pi_a(y^*ax)h_g, h_g \rangle = \langle \pi_a(y^*ax)h_f, h_f \rangle = f(y^*ax) = \lambda. \end{aligned}$$

Moreover, by (5), we get

$$\begin{aligned}
 \|\pi_a(x)h\|_{\pi_a(a)}^2 &= \langle \pi_a(a)\pi_a(x)h, \pi_a(x)h \rangle = \langle \pi_a(x^*ax)h, h \rangle \\
 &= \sum_{g \in \mathcal{S}_a(\mathcal{A})} \langle \pi_a(x^*ax)h_g, h_g \rangle = \langle \pi_a(x^*ax)h_f, h_f \rangle \\
 &= f(x^*ax) = \|x\|_a^2 = \gamma_{\pi_a(a)}(\pi(x)).
 \end{aligned}$$

So, $W_a(x, y) \subseteq W_{\pi_a(a)}(\pi_a(x), \pi_a(y))$. \square

Remark 2. For $\varepsilon = 0$ in [Theorem 2.9](#), we derive the characterization of a -BJ-orthogonality which is obtained in Theorem 2.6 of [\[22\]](#).

3. Approximate strong a -Birkhoff-James orthogonality in C^* -algebras

In this section we investigate the concept of approximate strong a -Birkhoff-James orthogonality in \mathcal{A} .

Definition 3.1. For $\varepsilon \in [0, 1)$, we say that an element $x \in \mathcal{A}$ is approximate strong a -Birkhoff-James orthogonal (strongly (ε, a) -BJ-orthogonal) to element $y \in \mathcal{A}$, in short $x \perp_{SBJ-\varepsilon}^a y$, if

$$\|x + yb\|_a^2 \geq \|x\|_a^2 - 2\varepsilon\|x\|_a\|yb\|_a, \quad (\forall b \in \mathcal{A}).$$

Proposition 3.2. Let $x, y \in \mathcal{A}$ and let $\varepsilon \in [0, 1)$. Then the following statements hold:

- (i) For $\varepsilon \in [0, \frac{1}{2})$, strongly (ε, a) -BJ-orthogonality is non-degenerated,
- (ii) Strongly (ε, a) -BJ-orthogonality is homogenous,
- (iii) If $x \perp_{SBJ-\varepsilon}^a y$, then $x \perp_{B\mathcal{J}-\varepsilon}^a y$,
- (iv) $x \perp_{SBJ-\varepsilon}^a y$ if and only if $x \perp_{B\mathcal{J}-\varepsilon}^a yb$ for all $b \in \mathcal{A}$.

Proof. (i) Let $x \in \mathcal{A}$ and $x \perp_{SBJ-\varepsilon}^a x$. So $\|x + xb\|_a^2 \geq \|x\|_a^2 - 2\varepsilon\|x\|_a\|xb\|_a$ for all $b \in \mathcal{A}$. Let $b = -1_{\mathcal{A}}$. Then $\|x - x1_{\mathcal{A}}\|_a^2 \geq \|x\|_a^2 - 2\varepsilon\|x\|_a^2$, and so $\|x\|_a^2(1 - 2\varepsilon) \leq 0$.

Therefore $x = 0$, since $\varepsilon \in [0, \frac{1}{2})$.

- (ii) Assume that $x \perp_{SBJ-\varepsilon}^a y$. Let $\alpha, \beta \in \mathbb{C}$ such that $\alpha \neq 0$. Then

$$\begin{aligned}
 \|\alpha x + \beta yb\|_a^2 &= \|\alpha(x + \frac{\beta}{\alpha}yb)\|_a^2 = |\alpha|^2\|x + \frac{\beta}{\alpha}yb\|_a^2 \\
 &\geq |\alpha|^2(\|x\|_a^2 - 2\varepsilon\|x\|_a\|\frac{\beta}{\alpha}yb\|_a) \\
 &= \|\alpha x\|_a^2 - 2\varepsilon\|\alpha x\|_a\|\beta yb\|_a,
 \end{aligned}$$

for all $b \in \mathcal{A}$. It follows that $\alpha x \perp_{SBJ-\varepsilon}^a \beta y$.

(iii) It is enough to take $b = \lambda 1_{\mathcal{A}}$ for $\lambda \in \mathbb{C}$ in [Definition 3.1](#).

(iv) Assume that $x \perp_{SBJ-\varepsilon}^a y$. Then

$$\|x + yb\|_a^2 \geq \|x\|_a^2 - 2\varepsilon\|x\|_a\|yb\|_a \quad (\forall b \in \mathcal{A}). \quad (8)$$

Substituting b with λb ($\lambda \in \mathbb{C}$) in (8), we conclude that $\|x + \lambda yb\|_a^2 \geq \|x\|_a^2 - 2\varepsilon|\lambda|\|x\|_a\|yb\|_a$, and so $x \perp_{B_{J-\varepsilon}}^a yb$. Now, assume that $x \perp_{B_{J-\varepsilon}}^a yb$ for all $b \in \mathcal{A}$. So

$$\|x + \lambda yb\|_a^2 \geq \|x\|_a^2 - 2\varepsilon|\lambda|\|x\|_a\|yb\|_a, \quad (9)$$

for all $\lambda \in \mathbb{C}$. Taking $\lambda = 1$ in (9), we conclude that $x \perp_{SBJ-\varepsilon}^a y$. \square

In [Proposition 3.2](#), we have shown that $\perp_{SBJ-\varepsilon}^a \subseteq \perp_{B_{J-\varepsilon}}^a$. But the converse is not true in general. The following example illustrate this fact.

Example 3.3. Let $\varepsilon \in [0, \frac{1}{2})$ and $a = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Then

$$\mathcal{S}_a(\mathbb{M}_2(\mathbb{C})) = \{\varphi_h : h \in \mathcal{L}_a\}.$$

Take $x = I_2$, $y = \begin{bmatrix} 0 & \frac{1}{2} \\ 1 & 0 \end{bmatrix}$. By the same argument as in [Example 2.4](#), we get $\|x\|_a = 1$ and $\|y\|_a = \frac{1}{\sqrt{2}}$. Hence for all $\lambda \in \mathbb{C}$, we have

$$\begin{aligned} \|x + \lambda y\|_a^2 &= \sup_{\varphi_h \in \mathcal{S}_a(\mathbb{M}_2(\mathbb{C}))} \varphi_h((x + \lambda y)^* a(x + \lambda y)) \\ &= \sup_{h \in \mathcal{L}_a} \text{Tr} \left(\begin{bmatrix} h_{11} & h_{12} \\ \bar{h}_{12} & h_{22} \end{bmatrix} \begin{bmatrix} 1 & \bar{\lambda} \\ \frac{1}{2}\bar{\lambda} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2}\lambda \\ \lambda & 1 \end{bmatrix} \right) \\ &= \sup_{h \in \mathcal{L}_a} \text{Tr} \left(\begin{bmatrix} h_{11} & h_{12} \\ \bar{h}_{12} & h_{22} \end{bmatrix} \begin{bmatrix} 2 + |\lambda|^2 & 2\text{Re}\lambda \\ 2\text{Re}\lambda & 1 + \frac{1}{2}|\lambda|^2 \end{bmatrix} \right) \\ &= \sup_{h \in \mathcal{L}_a} \text{Tr}((2 + |\lambda|^2)h_{11} + 4\text{Re}(\lambda h_{12}) + (1 + \frac{1}{2}|\lambda|^2)h_{22}) \\ &\geq 1 + \frac{|\lambda|^2}{2} \geq 1 = \|x\|_a^2, \end{aligned}$$

since $h_0 = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{L}_a$. Therefore

$$\|x + \lambda y\|_a^2 \geq \|x\|_a^2 \geq \|x\|_a^2 - 2\varepsilon|\lambda|\|x\|_a\|y\|_a,$$

for all $\varepsilon \in [0, \frac{1}{2})$. So $x \perp_{B_{J-\varepsilon}}^a y$. But for $\varepsilon \in [0, \frac{1}{2})$, $x \not\perp_{SBJ-\varepsilon}^a y$. Indeed, take $b = \begin{bmatrix} 0 & -1 \\ -2 & 0 \end{bmatrix}$. By a similar argument, we get $\|yb\|_a = 1$. Moreover, since

$$x + yb = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \text{ if}$$

$$\|x + yb\|_a^2 = 0 \geq 1 - 2\varepsilon = \|x\|_a^2 - 2\varepsilon\|x\|_a\|yb\|_a,$$

then we conclude that $\varepsilon \in [\frac{1}{2}, 1)$, which is impossible.

Proposition 3.4. *Let $x, y \in \mathcal{A}$ and let $\varepsilon \in [0, 1)$. If $x^\sharp x \perp_{SBJ-\varepsilon}^a x^\sharp y$, then $x \perp_{SBJ-\varepsilon}^a y$.*

Proof. Assume that $x \neq 0$. Since $x^\sharp x \perp_{SBJ-\varepsilon}^a x^\sharp y$, by the definition, we get

$$\|x^\sharp x + x^\sharp yb\|_a^2 \geq \|x^\sharp x\|_a^2 - 2\varepsilon\|x^\sharp x\|_a\|x^\sharp yb\|_a \quad (\forall b \in \mathcal{A}).$$

By (1) and the sub-multiplicative property of $\|\cdot\|_a$, we have

$$\|x^\sharp\|_a^2\|x + yb\|_a^2 \geq \|x^\sharp x + x^\sharp yb\|_a^2 \geq \|x\|_a^4 - 2\varepsilon\|x\|_a^3\|yb\|_a.$$

But $\|x\|_a \neq 0$. Then

$$\|x + yb\|_a^2 \geq \|x\|_a^2 - 2\varepsilon\|x\|_a\|yb\|_a,$$

and so $x \perp_{SBJ-\varepsilon}^a y$. \square

Our next results give us characterization of strong (ε, a) -BJ-orthogonality based on [Proposition 3.2](#), (iv) and [Theorems 2.7](#) and [2.9](#).

Theorem 3.5. *Let $x, y \in \mathcal{A}$ and let $\varepsilon \in [0, 1)$. Then $x \perp_{SBJ-\varepsilon}^a y$ if and only if for each $\theta \in [0, 2\pi)$ there exists $\varphi \in \mathcal{S}_a(\mathcal{A})$ such that $\varphi(x^*ax) = \|x\|_a^2$ and $\operatorname{Re}(e^{-i\theta}\varphi(\langle x, y \rangle_a b)) \geq -\varepsilon\|x\|_a\|yb\|_a$ for all $b \in \mathcal{A}$.*

Theorem 3.6. *Let $x, y \in \mathcal{A}$ and let $\varepsilon \in [0, 1)$. Then $x \perp_{SBJ-\varepsilon}^a y$ if and only if there exists $\varphi \in \mathcal{S}_a(\mathcal{A})$ such that $\varphi(x^*ax) = \|x\|_a^2$ and $|\varphi(\langle x, y \rangle_a b)| \leq \varepsilon\|x\|_a\|yb\|_a$ for all $b \in \mathcal{A}$.*

Finally, in the last result, we investigate the condition of equivalence between (ε, a) -BJ-orthogonality and its strong version on \mathcal{A} implies that \mathcal{A} must be a commutative C^* -algebra.

Theorem 3.7. *Let $\varepsilon \in [0, \frac{1}{2})$. If*

$$x \perp_{SBJ-\varepsilon}^a y \Leftrightarrow x \perp_{BJ-\varepsilon}^a y \quad (\forall x, y \in \mathcal{A}),$$

then \mathcal{A} is commutative.

Proof. First, we prove that for all $x, b \in \mathcal{A}$ there exists $0 \neq \alpha \in \mathbb{C}$ so that

$$xb \perp_{SBJ-\varepsilon}^a (xb^2 + \alpha xb). \quad (10)$$

If $xb = 0$, then clearly (10) holds. So, let $x \in \mathcal{A}$ and $xb \neq 0$. Then $xb \not\perp_{BJ-\varepsilon}^a x$. In fact, if $xb \perp_{BJ-\varepsilon}^a x$, then $xb \perp_{SBJ-\varepsilon}^a x$, and so $xb \perp_{BJ-\varepsilon}^a xb$, by [Proposition 3.2](#), part (iv). Since (ε, a) -BJ-orthogonality is non-degenerated for $\varepsilon \in [0, \frac{1}{2})$, we conclude that $xb = 0$, which is incredible. Since a is invertible, one can find $\varphi \in \mathcal{S}_a(\mathcal{A})$ such that $\varphi(\langle xb, xb \rangle_a) = \|xb\|_a^2$. On the other hand, since $xb \not\perp_{BJ-\varepsilon}^a x$, by [Theorem 2.9](#), we get $|\varphi(\langle xb, x \rangle_a)| > \varepsilon \|xb\|_a \|x\|_a > 0$, and hence $\varphi(\langle xb, x \rangle_a) \neq 0$. Now, let $\alpha = \frac{-\|xb\|_a}{\varphi(\langle xb, x \rangle_a)}$. Therefore

$$\begin{aligned} |\varphi(\langle xb, xb + \alpha x \rangle_a)| &= \left| \|xb\|_a^2 - \frac{\|xb\|_a^2}{\varphi(\langle xb, x \rangle_a)} \varphi(\langle xb, x \rangle_a) \right| \\ &= 0 \leq \varepsilon \|xb\|_a \|xb + \alpha x\|_a. \end{aligned}$$

Hence [Theorem 2.9](#) yields that $xb \perp_{BJ-\varepsilon}^a (xb + \alpha x)$, and so $xb \perp_{SBJ-\varepsilon}^a (xb^2 + \alpha xb)$, by the assumption and [Proposition 3.2](#).

It is known that in non-commutative C^* -algebras, there is a nonzero $b \in \mathcal{A}$ with $b^2 = 0$ (see [\[24\]](#), p.68). If $x = b^*$, then there is $\alpha \neq 0$ such that $xb \perp_{SBJ-\varepsilon}^a \alpha xb$, by (10). Therefore $b^*b = xb = 0$, and hence $b = 0$. This is a contradiction, and so \mathcal{A} is commutative. \square

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

- [1] A. Bourhim and M. Mabrouk, a -numerical range on C^* -algebras, *Positivity* **25** (2021) 1489 – 1510, <https://doi.org/10.1007/s11117-021-00825-6>.
- [2] A. Alahmari, M. Mabrouk and A. Zamani, Further results on the a -numerical range in C^* -algebras, *Banach J. Math. Anal.* **16** (2022) #25, <https://doi.org/10.1007/s43037-022-00181-x>.
- [3] L. Arambašić, A. Guterman, B. Kuzma and S. Zhilina, Birkhoff-James orthogonality: Characterizations, preservers, and orthogonality graphs, In: Aron, R. M., Moslehian, M. S., Spitkovsky, I. M., Woerdeman, H.J. (eds) *Operator and Norm Inequalities and Related Topics*. Trends in Mathematics. Birkhäuser, Cham (2022).
- [4] C. Benítez, M. Fernández and M. L. Soriano, Orthogonality of matrices, *Linear Algebra Appl.* **422** (2007) 155 – 163.
- [5] R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Special issue celebrating the 60th birthday of Ludwig Elsner, *Linear Algebra Appl.* **287** (1999) 77 – 85.

- [6] A. Mal, K. Paul and D. Sain, *Birkhoff-James Orthogonality and Geometry of Operator Spaces*, Springer, Singapore, 2024.
- [7] A. Zamani, Birkhoff-James orthogonality of operators in semi-Hilbertian spaces and its applications, *Ann. Funct. Anal.* **10** (2019) 433 – 445, <https://doi.org/10.1215/20088752-2019-0001>.
- [8] Lj. Arambašić and R. Rajić, On three concepts of orthogonality in Hilbert C^* -modules, *Linear Multilinear Algebra* **63** (2015) 1485 – 1500, <https://doi.org/10.1080/03081087.2014.947983>.
- [9] L. Arambašić and R. Rajić, A strong version of the Birkhoff-James orthogonality in Hilbert C^* -modules, *Ann. Funct. Anal.* **5** (2014) 109 – 120, <https://doi.org/10.15352/afa/1391614575>.
- [10] L. Arambašić and R. Rajić, The Birkhoff-James orthogonality in Hilbert C^* -modules, *Linear Algebra Appl.* **437** (2012) 1913 – 1929, <https://doi.org/10.1016/j.laa.2012.05.011>.
- [11] T. Bhattacharyya and P. Grover, Characterization of Birkhoff-James orthogonality, *J. Math. Anal. Appl.* **407** (2013) 350 – 358, <https://doi.org/10.1016/j.jmaa.2013.05.022>.
- [12] M. S. Moslehian and A. Zamani, Characterizations of operator Birkhoff-James orthogonality, *Canad. Math. Bull.* **60** (2017) 816 – 829, <https://doi.org/10.4153/CMB-2017-004-5>.
- [13] P. Wójcik and A. Zamani, From norm derivatives to orthogonalities in Hilbert C^* -modules, *Linear Multilinear Algebra* **71** (2023) 875 – 888, <https://doi.org/10.1080/03081087.2022.2046688>.
- [14] J. Chmieliński, T. Stypuła and P. Wójcik, Approximate orthogonality in normed spaces and its applications, *Linear Algebra Appl.* **531** (2017) 305–317, <https://doi.org/10.1016/j.laa.2017.06.001>.
- [15] J. Chmieliński, On an ε -Birkhoff orthogonality, *J. Inequal. Pure Appl. Math.* **6** (2005) #79.
- [16] J. Chmieliński, Approximate Birkhoff-James orthogonality in normed linear spaces and related topics. In: R. M. Aron, M. S. Moslehian, I. M. Spitkovsky and H. J. Woerdeman, (eds.) *Operator and Norm Inequalities and Related Topics*, 303 – 320. Birkhäuser, Cham, 2022.
- [17] J. Chmieliński, K. Gryska and P. Wójcik, Convex functions and approximate Birkhoff-James orthogonality, *Aequationes Math.* **97** (2023) 1011 – 1021, <https://doi.org/10.1007/s00010-023-01003-7>.

- [18] A. Mal, K. Paul, T. S. S. R. K. Rao and D. Sain, Approximate Birkhoff-James orthogonality and smoothness in the space of bounded linear operators, *Monatsh. Math.* **190** (2019) 549 – 558, <https://doi.org/10.1007/s00605-019-01289-3>.
- [19] K. Paul, D. Sain and A. Mal, Approximate Birkhoff-James orthogonality in the space of bounded linear operators, *Linear Algebra Appl.* **537** (2018) 348 – 357, <https://doi.org/10.1016/j.laa.2017.10.008>.
- [20] C. Conde and K. Feki, On approximate A-seminorm and A-numerical radius orthogonality of operators, *Acta Math. Hungar.* **173** (2024) 227 – 245, <https://doi.org/10.1007/s10474-024-01439-6>.
- [21] J. Sen, D. Sain and K. Paul, On approximate orthogonality and symmetry of operators in semi-Hilbertian structure, *Bull. Sci. Math.* **170** (2021) #102997, <https://doi.org/10.1016/j.bulsci.2021.102997>.
- [22] H. S. Jalali Ghamsari and M. Dehghani, Characterization of a-Birkhoff-James orthogonality in C^* -algebras and its applications, *Ann. Funct. Anal.* **15** (2024) #36, <https://doi.org/10.1007/s43034-024-00339-8>.
- [23] M. L. Arias, , G. Corach and M. C. Gonzalez, Partial isometries in semi-Hilbertian spaces, *Linear Algebra Appl.* **428** (2008) 1460 – 1475, <https://doi.org/10.1016/j.laa.2007.09.031>.
- [24] J. Dixmier, *C^* -Algebras*, Amsterdam: North-Holland Publishing, 1977.
- [25] G. J. Murphy, *C^* -algebras and operator theory*, Academic Press, Inc., Boston, MA, 1990.

Mahdi Dehghani
 Department of Mathematical Science,
 Yazd University,
 Yazd, Iran
 e-mail: m.dehghani@yazd.ac.ir, e.g.mahdi@gmail.com

Hooriye Sadat Jalali Ghamsari
 Department of Pure Mathematics,
 University of Kashan,
 Kashan, Iran
 e-mail: jalali.hooriyesadat@gmail.com