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Abstract

This paper proposes several new statistical bounds for graph energy de-
rived from the eigenvalues of the adjacency matrix. Using inequalities in-
volving the arithmetic, geometric, and generalized means, along with vari-
ance and standard deviation, we establish both upper and lower bounds
for E(G). These statistical bounds capture not only mean relationships but
also eigenvalue variability, offering more flexible and accurate estimates than
conventional deterministic inequalities. The approach integrates tools from
inequality theory and spectral graph theory, with applying weighted means
and Jensen-type inequalities. We also conjecture based on numerical evi-
dence that the energy-to-geometric mean ratio converges to a constant value
for large Erdés-Rényi random graphs. A detailed analysis of path graphs
demonstrates the effectiveness of the proposed bounds, offering improved
estimates.
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1. Introduction

The concept of graph energy is the study of conjugated hydrocarbons using a
tight-binding method known in chemistry as the Hiickel molecular orbital (HMO)
method. It is introduced by Gutman and defined as the sum of the absolute values
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of the eigenvalues of the adjacency matrix. In this context, let G be a simple graph
with n vertices and adjacency matrix A(G). The energy of G, denoted by E(G),
is given by:

where A\, g, ..., A\, are the eigenvalues of A(G) which represents the total energy
of conjugated molecule. Graph energy has been discussed in several references
such as [1-7]. Some fundamental theorems in mathematics can also found in [8, 9]
and [4].

Recent studies have proven some inequalities for graph energy using eigenvalues
and determinant of adjacency matrix, topological indices and self-loops for finding
graph energy bounds. For instance, in references [1, 5|, Akbari et al. derived lower
bounds by the determinant of the adjacency matrix, while Jahanbani [3] provided
sharp upper bounds using Randi¢ index, and Jianping Liu [10] proposed some
inequalities via self-loops for graph energy.

In contrast to these approaches, the present work systematically connects sta-
tistical indices, such as the arithmetic-geometric mean inequality, Jensen’s inequal-
ity, and variance, standard deviation and other tools to establish new bounds for
graph energy. In particular, these bounds have some advantages: Statistical in-
dices allow for different distributions of vertices or edges and finding new bounds
on the energy index. Additionally, they enhance the predictive power of properties
for random and structured graphs in conditions of uncertainty. Unlike classical
bounds that rely only on fixed spectral parameters or deterministic inequalities,
statistical indices incorporate the dispersion and distributional features of eigen-
values. This allows our method to produce tighter and more adaptive bounds,
particularly for irregular or random graphs where traditional inequalities often
lose accuracy. You could study some statistical indices in articles [8, 9] and [11].

2. Statistical bounds for graph energy

This section is devoted to deriving new bounds for graph energy using statisti-
cal indices and inequalities. We begin by recalling fundamental definitions and
classical inequalities, such as the arithmetic-geometric mean inequality, and then
extend these concepts to the spectral setting of graph eigenvalues. By incorpo-
rating variance, standard deviation, and weighted means, we establish a series of
upper and lower bounds for E(G). Furthermore, we explore the role of convexity
and Jensen’s inequality in obtaining generalized mean bounds. The results pre-
sented here not only refine existing estimates but also provide a unified framework
for analyzing graph energy through statistical lens. We conclude the section with
a detailed numerical example illustrating the applicability and sharpness of the
derived bounds.

Definition 2.1. ([8]). For the nonnegative real numbers x1, z3, ..., x,, the
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. . s 1 n ) . . _ n ) 1
arithmetic mean is as = - > ." | ;, and the geometric mean is as Ry = ([[,_; =;)» =
[T, o

i=1Ti -

Definition 2.2. ([4]). Inequality of arithmetic and geometric mean for the non-

negative real numbers x1, x2, ..., T, is as follows:
nool
Rg—i=1 X n; T = b (1)
Equality holds whenever z; = 29 = ... = z,,. Generally if & = (a1, a2, ..., ap),

a;>0,%" a;=1and 0 <s <1, then

n n 1/8 n
Hyf‘ < (Z ai@/f) < Z%‘% (2)
i=1 i=1 i=1

and considering a; = %, 5 = % and y; = |\;|?, we conclude:

Theorem 2.3. Let G be a graph with eigenvalues A1, A, ..., A\n of its adjacency
matriz, then

n‘det(A)‘l/n = n(ﬁ |)\i|)1/n = n(ﬁ |)\i|2)ﬁ <EG)< (ni )\i|2)é = V2mn.
=1 i=1 i=1 -

Proof. Set y; := |\;|? fori = 1,...,n. Apply the generalized arithmetic-geometric
mean inequality (inequality (2) in the text) with «; = % and s = % This yields

n

(ﬁyi)l/n < (izn:yil/z)Q < %Zy

i=1 i=1

Substituting y; = |\;|? gives

n 1/n 1 n 2 1 n
(TIR) " = (o) <>k
i=1 i=1 i=1
Multiplying through by n? yields

w2 (TIne)" < (L) <3
i=1 i=1 i=1

Taking square roots (all quantities are nonnegative) gives

n(ﬁwﬁ)i < zn:w < (nzn:wﬁ)m.
=1 =1 =1
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Noting that ([T, [A:f2)"®" = (TTr2y I\ Y™ = [ det(A)[/™ and that S, [Ai]? =
tr(A?) = 2m, we obtain the displayed bounds

n|det(A)[V" < B(G) < (Y [\

i=1

1z _ 2mn.

This completes the proof. The structure of this proof follows the approach given

in Remark 2.2 of [4]. O
Theorem 2.4. ([9, Th, 2.1]). Let fori =1, 2, ..., n, z; > 0, and o; > 0,
Bi > 0 satisfy Y1y a; = >0 Bi = 1. Writing aumin := min{oa, ..., an},
Qmaz = max{ay, ..., an}, and similarly for Bmin and Bmaz, we have
a n n n n
k )
i (Y - [T o) < 3 ari— [
i=1 i=1 i=1 i=1
a n n
) Bi
< kirlr’lzax n{i}(z Bix; H ) (4)
i=1 i=1
Equality holds in either of the inequalities if and only if either x1 = --- = z,, or

Omazr = Bmzn (OT equ’ivalentl% Amin = Bmaz)-

Theorem 2.5. Let 8= (81, B2,...,8,) with B; >0 and >_7'_, B; =1, then

Briax (ZBZIZ rlle> +n- Ry < E(G) < (Zﬂlxz - ]__[le> +n- Ry,

- - (5)

1
Bmin

where Ry = (17, xi)l/n is the geometric mean of the absolute eigenvalues, and
Pmin = Min; i, Pmax = max; ;.

Proof. This result follows from Theorem 2.4 and a similar method with Theorem
2.4 of [4] by setting @; = |A;|, and a; = 1. Therefore, we have,

1 n n 1/n
ﬁZ‘M - (HP\z‘)
i=1

=1

- ! : <Zﬂz‘|)\i| - 1T
A =1 i=1

IN

1 ol TT e
nﬁmax (;ﬁzp\z H‘)\’L| )

i=1

IN

51-) |
Multiplying through by n, we get:

ﬁl (Zﬁip‘il - 1T 5") <D Nl —nRy < % <Zﬁi|>\i| = I
max-\ j=1 i=1 i=1 I =1 i=1

a> |
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Adding nR, to all sides yields the desired result:

3 <Z,6’L|A— >+nR < E(G _5 (Z@M— >+nRg.
max min i1

=1
O

Definition 2.6. ([4, 9]). Suppose X = (z1, #3, ..., &) be a vector of the
nonnegative numbers. Then define the variance of x; as:

o(X) == 3" (i~ ). (6)
i=1
Also variance of the square roots ,/z; as:
n n 2
(XM = Y (f ;Z\/ﬂ ™)
i=1 1
with respect to the discrete probability Y . | @;d,.

Theorem 2.7. ([8, Th.1]). Let x; > 0 fori=1, 2, ..., n, and «; > 0 satisfy
St a; =1. Then

n
1 1
[[ =< Z = alef - Z )’ ®)
i=1 i=1 k=1
1 11 1
where Y " ai(x? =Y 1_, akxk)z = var(x2) of the vector X3 = (z2, 22, ..., z2)

with respect to the probability >, a;0,,. Therefore a large variance (of x%)
pushes the arithmetic and geometric means apart.

Theorem 2.8. Let G be a graph with adjacency eigenvalues A1, Az, ..., Ap, and
define x; = |\;| fori=1,2,...,n. Then the energy of G satisfies the inequality:
B(G) = n (R, +0*(X"/?)), (9)

1 11 1
where X2 = (2, 3, ..., x}).

Proof. From Theorem 2.7, for non-negative real numbers z; and o; = %, we have:

[ <tyn-13 (v t3 )

=1
This implies for z; = A; :

Ry< _B(G)-*(AV?) = R, +0’(AY?) < E(G)

—_
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Multiplying both sides by n gives:

E(G)>n (Rg + 02(x1/2)) ,

1 1 1
where AY2 = (A7, A3, ..., \3) = X1/2 O
Remark 1. ([4, §]). Let z; > 0 and o; > 0 for i = 1,2,...,n. Additionally, let
Yoy a;=1,0< My =min{z, z2, ..., z,} and My = maz{z1, 2, ..., T}
Then

n n

1 n n 1 n n
B Z a;(x; — ; apzy)? < ;Oéﬂi - 1_[1 Tioy < oM, Zl a;(x; — ;akxk)2~
= 1= 1 1= =

=1

Theorem 2.9. Let G be a graph with adjacency eigenvalues Ay, Aa, ..., An, and
define x; = |\;| for i = 1,2,...,n. Let My = min{z1,22,...,2,} and My =
max{z1,%2,...,2n}. Then the energy E(G) = > | N\i = Y., x; satisfies the
following inequality:

n<Rg+"2(X))gE(G)§n(Rg+

2M>

)

Proof. From Remark 1 and similar to Theorem 2.11 of [4], for nonnegative values
z; and uniform weights a; = %, we have:

n

1 1 1 1 1
rk (noiXe) 18- (lln) =ap i (n-iin)

i=1 i=1

Then multiplying all sides by n/n, we could write it using the variance o2(X) as:

o3(X) 1 o%(X)
< — — < .
2My nE(G) Ry < 2M,
Adding R, to all sides:
o2(X) 1 o%(X)
<= < )
Rg + 2M2 - nE(G) - Rg + 2M1

Multiplying all sides by n yields:
(X 2(X
n(Rg—l—U ( )) gE(G)gn(Rg+” ( )>.

O

Lemma 2.10. (/11]). Let n > 2 and x1, z2, ..., T, be a sequance of n > 2 real

numbers with mean > 0 and variance 0.
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(a) If 0 < &< L then each x; is positive.

V1
(b) If every term of the sequence x1, X2, ..., Xn is positive, then 0 < %
n—1.
Corollary 2.11. ([11]). Let x1, xa, ..., x, is a positive sequence for n > 2 with

mean [ and variance o2, then

-

M—Rgzu—<ﬁxi>n§\/n—la. (10)

Theorem 2.12. Let y = %Z?:l T; = %, where x; = |N| fori =1,2,...,n
and o be the standard deviation of the sequence x1,To,...,T,, then

nR,—nvn—1c < E(G) < nR;+nvn—1o.

where Ry = (H:L=1 wi)l/n is the geometric mean of the eigenvalue magnitudes.

Proof. From Corollary 2.11, we have:
pw— Ry < Vn—1o.
For upper bound, multiplying by n and using E(G) = npu:
E(G) <nRy+nvn—1o.

For the lower bound, since all x; > 0 and n > 2, we have o > 0 and v/n — 1 > 0,
thus nv/n — 10 > 0. From the AM-GM inequality we have y > R,, which implies:

E(G) =nu>nR, >nR, —nvn—lo.
Combining these bounds yields:
nRy — nn—1lo < E(G) < nR, +nvn—1lo.
This completes the proof. O
Definition 2.13. ([12]). Let f : R™ — R be a norm, and 0 < 6 < 1, then
PO+ (1= 0)y) < F(62) + F(1 - 0)y) = 0/(x) + (1 — 0)(y),

is named Jensen’s inequality. The equality follows from the homogeneity of a
norm.
We could extend the inequality to infinite sums, integrals, and expected values.
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Definition 2.14. ([12]). Let f be twice differentiable, that is, the second deriva-
tive V2 f exists at each point in dom f, which is open, then

1. f is convex if and only if its dom is convex and the second derivative
V2f(x) > 0 for all z € domf. For functions on R, this reduces to f”(x) > 0,
implying the derivative is nondecreasing.

2. fis concave if V f(z) < 0 for all z € dom. Strict convexity can be partially
characterized by the condition V2 f(x) > 0, but the converse is not always true.

Theorem 2.15. For any real number r > 1, the energy of the graph G with
x; = |Ni| fori=1,2,...,n satisfies:

n 1r
1
EG = Z< . - T - 'MT ’ yrrratm )y
(GQ) g i <n (n;:lxl) n (x1,x2 ZTn)

i=1
where M,.(x1,...,x,) is the generalized mean of order r.

Proof. Consider the function f(z) = 2" for > 0 and r > 1. The second derivative
is:

() =r(r—1)2"2

For r > 1 and x > 0, we have f”(x) > 0, so f is convex.
By Jensen’s inequality for the convex function f, applied to the values x1, ..., z,,

we have:
1 & 1 &
B ER o
which gives:

RN S
(le> < fzgc;
n i=1 n i=1

Taking the r-th root of both sides (which preserves inequality since r > 1):

n 1/r
1 1,
=1 =1
Multiplying both sides by n yields:
n 1 1/r
< n-| = ol
S ai<n <n z) ,
=1 i=1
that is, E(G) < n- M. (z1,...,Zy). O

Finally, it is worth noting that our framework extends naturally from determin-
istic to random graphs. Among various models, the classical Erd6s—Rényi random
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n

graph G(n, p)—where each of the (%) possible edges appears independently with
probability p € (0,1) (see [13])-provides a compelling probabilistic setting.
Let A\, Aa,..., A\, denote the adjacency eigenvalues of G(n,p) and define z; =
[Ai|. We conjecture that as n — oo, the ratio
Ry

EG)/n

for some universal constant ¢ > 0, where R, = ([]\—, xi)l/ " is the geometric mean
of the absolute eigenvalues.

This ratio arises from the classical AM-GM inequality R, < @ = p applied
to the absolute eigenvalues. In the case of independent random variables, Aldaz

[9] defined the ratio
(ITiy la)

% > il

and proved that r,,(z) — e~ & 0.5615 as n — oo, where + is the Euler-Mascheroni
constant. Our framework generalizes this concept to the dependent eigenvalue
structure of random graphs.

Numerical simulations for Erdés—Rényi graphs with n up to 800 suggest that
% converges to approximately 0.707 for large n. This observed limit, while
based on computational evidence, provides a basis for conjecturing asymptotic
behavior in random graphs. Determining this limit analytically remains an open
problem that would significantly advance our understanding of spectral properties
in large random networks.

Tn(x) =

Example 2.16. Consider the path graph P;. To illustrate the flexibility of Theo-
rem 2.5, we interpret the coefficients 3; as vertex weights in a specific application.
Let 8 = (0.3,0.5,0.1,0.1) and 8’ = (0.4,0.4,0.1,0.1) represent different vertex
importance distributions. The eigenvalues are:

e — 06— 0 — 0
B:0.3 05 01 0.1
B':04 04 01 0.1

Figure 1: Path graph P, with vertex weight vectors 8 and 5’

k
Ap = 2cos (;) k=1,23,4,

yielding:
[A1] = |A4] = 1.618034, |X2] = |A3] = 0.618034.

The energy is:

E(Py) ~ 2(1.618034) + 2(0.618034) = 4.472136.
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The geometric mean is Ry ~ Ry = 0.999999 ~ 1 and n = 4. We now apply the
following inequality of Theorem 2.5:

ﬂ1<ZM&—HM

i=1

ﬂi)—‘,-nRg < E(GQ) < 61'

(Z&M—Hm
=1

=1

Bi ) +nRg7

Case 1: 8= (0.3,0.5,0.1,0.1)

> Bilail = 1.018034, ] INI% =~ 0.908244,
1
Lower bound = 5—(1.018034 — 0.908244) + 4 ~ 4.219580),

Upper bound = 1.018034 — 0.908244) + 4 ~ 5.097901,

1
o7
|4.220 < B(Py) < 5.098. |

Case 2: 5/ =(0.4,0.4,0.1,0.1)

> BilAil ~ 1118034, ] |A:l% = 1.000000,

1
Lower bound = 0—4(1.118034 — 1.000000) + 4 =~ 4.295085,

Upper bound = (1118034 — 1.000000) +4 ~ 5.180340,

|4.295 < B(Py) < 5.180. |

In both cases, the actual energy E(P,) = 4.472 lies within the established bounds,
validating our theoretical results.

3. Conclusion

In this paper, we introduce a comprehensive framework for bounding graph en-
ergy using statistical indices derived from the eigenvalues of the adjacency matrix.
By using classical inequalities such as the arithmetic-geometric mean inequality,
weighted mean inequalities, and variance-based bounds, we establish both upper
and lower estimates that refine and extend existing results. The use of Jensen’s
inequality further allows us to derive bounds involving generalized means, broad-
ening the applicability of our approach. Our investigation also extend to random
graphs, where we conjectured the convergence of the ratio between geometric mean
and average energy to a universal constant, supported by numerical evidence. This
bridges spectral graph theory with probability theory and random matrix theory,
opening avenues for future research. The numerical validation on path graphs con-
firme the practicality and accuracy of our bounds. Overall, this work underscores
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the power of statistical tools in spectral graph theory and provides a foundation
for further exploration of energy bounds in both deterministic and random graph
models.
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