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Abstract

Financial systemic risk refers to the transmission of distress among finan-
cial institutions, posing a significant threat to economic stability. Inspired
by epidemiological modelling, this study develops an extended compartmen-
tal framework based on the classical SIRS model to analyse the spread and
control of financial systemic risk within a banking network. The model intro-
duces six compartments: susceptible, immune, infected, curated, mitigated,
and removed to capture the diverse states of banks under systemic stress
and regulatory intervention. Central bank actions such as curatorship, mit-
igation, and temporary protection are explicitly incorporated. The model
is formulated as a system of ordinary differential equations, and analyti-
cal techniques are employed to derive the risk reproduction number, Rsr,
which serves as a threshold parameter governing the system’s long-term be-
haviour. Two equilibrium points are identified: the risk-free equilibrium,
which is locally and globally asymptotically stable when Rsr < 1, and the
endemic equilibrium, which persists when Rsr > 1. Numerical simulations
demonstrate how variations in key parameters such as the rate of curator-
ship, mitigation, and protection affect the prevalence of financial contagion.
While the model does not yield fundamentally new theoretical insights, it
offers a structured framework for evaluating the impact of regulatory inter-
ventions. The findings underscore the utility of epidemiological modelling in
financial risk analysis and highlight the importance of timely and targeted
control measures to prevent cascading failures in the banking sector.
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1. Introduction

Financial systemic risk refers to the "infection” of one financial institution that
triggers instability in others, potentially destabilising the entire financial system
[1]. By infection, we mean that if one bank experiences distress, the risk is trans-
ferred to other banks. This phenomenon has been the subject of considerable
empirical research over the past century [2]. Once the banking sector is infected
with financial systemic risk, the consequences can be severe, harming both the
economy and society at large. Indeed, many banks worldwide face systemic risks
that adversely affect economic development and the provision of financial services.
Although the intensity of systemic risk varies across institutions, the interconnec-
tivity of the banking sector ensures that the distress of one bank often affects
several others. More broadly, systemic risk is a multifaceted phenomenon en-
compassing social, economic, political, and cultural dimensions, which makes its
elimination extremely challenging [3].

Financial systemic risk has historically contributed to the collapse of banking
sectors, often resulting in poverty for large segments of the population [4]. It
manifests in different forms, including: (i) panic-driven crises arising from multi-
ple equilibria; (ii) crises triggered by sharp declines in asset prices; (iii) contagion
effects, whether systematic or idiosyncratic; and (iv) foreign exchange distortions
within the banking system. To evaluate such risks, several methodologies have
been developed, including tail risk measures, contingent claims analysis, network
models, and dynamic stochastic macroeconomic models [5–10]. In recent decades,
mathematical models have proven to be powerful tools for assessing the implica-
tions of financial systemic risk on economic stability and development [11].

The spread of financial systemic risk has often been likened to the spread of in-
fectious diseases in epidemiology [12]. This analogy has motivated the application
of mathematical epidemiological modelling to investigate the dynamic behaviour
of systemic risk, which has the potential to undermine the stability of the financial
system. In epidemiology, remedial measures such as treatment are typically aimed
at slowing or halting disease progression, with the ultimate goal of eradication.
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In a similar way, interventions in the financial market are intended to control the
spread and impact of systemic risk.

Several studies have applied epidemic models to analyse systemic risk con-
tagion in financial markets [13–15]. For example, when systemic risk emerges,
central banks often provide emergency funding to at-risk banks as a containment
measure [16, 17]. In these cases, the classical “SIR” model of Kermack and McK-
endrick (1927) has been employed, with compartments representing susceptible
(S), infected (I), and removed (R) institutions. While this model captures basic
contagion dynamics, it does not account for additional interventions. More recent
work [18] has combined epidemic models with complex network theory, extend-
ing the analysis to the “SIRS” model to study the spread of credit risk among
institutions. Building on this, we propose further improvements by incorporat-
ing mitigation and protection strategies for banks, analogous to vaccination and
hospitalisation in epidemiological models. These extensions are critical, as they
reflect real-world interventions used by regulators and central banks to stabilise
the financial system.

This paper aims to develop and analyse a novel epidemiological-inspired model
for financial systemic risk that explicitly incorporates intervention strategies such
as mitigation (central bank funding support) and protection (regulatory safe-
guards). Our objectives are threefold: (i) to formulate a theoretical model cap-
turing the dynamics of financial systemic risk under remedial interventions; (ii) to
derive the threshold parameter, termed the risk reproduction number (Rsr), which
determines whether systemic risk persists or dies out; and (iii) to use numerical
simulations to illustrate the impact of different intervention strategies on systemic
stability.

The structure of the paper is as follows. In Section 2, we present the formula-
tion of the theoretical model. Section 3 is devoted to the mathematical analysis
of the model. In Section 4, we derive the risk reproduction number (Rsr). Sec-
tion 5 provides numerical simulations of the model using Matlab, while Section 6
concludes with a discussion of the findings and their implications.

2. Model formulation

The model is formulated by categorizing the banks’ population N(t) into six com-
partments, namely, susceptible banks S(t), which are banks that have never been
infected by financial systemic risk; immune banks V (t), banks that are protected
from financial systemic risk irrespective of the circumstances around them; curated
C(t), banks which have liquidated for a specific period of time during which they
cannot be infected with financial systemic risk and infect others, financial systemic
risk infected banks I(t), these are banks which are infected with financial systemic
risk and are capable of influencing a susceptible bank to be infected with financial
systemic risk, Mitigated banks M(t), banks that obtained financial relief from the
central bank, in order to remedy financial systemic risk and the removed banks
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R(t), banks that are ex-financial systemic risky which have reformed during the
curatorship period and can still be infected by those banks with financial systemic
risk.
The total bank population at any time t is given by

N(t) = S(t) + V (t) + I(t) + C(t) +M(t) +R(t).

Referring to the flow diagram in Figure 1, the class of the immune banks is

Figure 1: The flow diagram of our model that depicts the flow of banks as their
status changes as a result of ‘infection’.

generated from periodical recruitment of banks without the financial systemic risk
at a rate (1 − θ)Λ, while those prone to infection with financial systemic risk
progress to the susceptible compartment at a rate θΛ.
Susceptible banks become infected by infected banks and become infectious at a
rate β, while financially systemic risky banks are curated at a rate σ. Curated and
financially systemic risky banks in the removed category become susceptible after
some time at a rate ω, while susceptible banks prone to financial systemic risk
become immune due to central bank intervention. In the model, ρ is the rate at
which banks are mitigated, and ν is the protection rate of the susceptible banks S.
Banks under mitigation are allowed to recover at a rate γ. All classes are subject
to collapse at a rate µ, that leads to removal from the financial system. In light
of the above assumptions, extending the model in [18], the resultant system of
ordinary differential equations is given by:

dS

dt
= θΛ + ωR− βSI

N
− (µ+ ν)S, (1)

dV

dt
= (1− θ)Λ + νS − µV, (2)
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dI

dt
=

βSI

N
− (µ+ σ)I, (3)

dC

dt
= σI − (µ+ ρ)C, (4)

dM

dt
= ρC − (µ+ γ)M, (5)

dR

dt
= γM − (µ+ ω)R, (6)

subject to the initial conditions

S(0) = S0 > 0, V (0) = V0 ≥ 0, I(0) = I0 ≥ 0, C(0) = C0 ≥ 0,M(0) = M0 ≥ 0, R(0) = R0 ≥ 0.

Equation (1) describes the dynamics of financial institutions that are susceptible
to financial systemic risk. Equation (2) describes the dynamics of banks protected
from financial systemic risk. Equation (3) describes the changes of banks that
are impacted by financial systemic risk and impact susceptible banks when there
is contagion. Equation (4) represents the dynamics of curated banks before any
mitigation. Equation (5) describes the changes over time for banks that are under
some intervention. The last equation, Equation (6), describes the changes over
time for banks that recover from the financial systemic risk. The parameters and
their hypothetical values are described in Table 1.

Table 1: Description of model parameters and their assumed values.

Parameter Description Value
θ Proportion of new banks recruited into S. 0.9
Λ Recruitment rate. 0.5
ν Rate at which susceptible banks become immune. 0.001
ω Rate at which removed banks return to S. 0.01
β Infection (contagion) rate. 0.65
σ Rate at which infected banks are curated. 0.08
ρ Rate of mitigation by the central bank. 0.6
µ Collapse rate (bank lifespan). 0.006
γ Recovery rate of mitigated banks. 0.8

3. Analysis of the model

Positivity of solutions
Theorem 3.1. Given the non-negative initial conditions

S(0) > 0, V (0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, M(0) ≥ 0, R(0) ≥ 0,

the solutions S(t), V (t), I(t), C(t),M(t), R(t) of the system remain non-negative
for all t ≥ 0.
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Proof. We analyze each equation of the system using differential inequalities and
separation of variables. Starting with Equation (1), observe that at S = 0:

dS

dt

∣∣∣∣
S=0

= θΛ + ωR ≥ 0.

Hence, the flow into the susceptible compartment is non-negative at the boundary.
We derive the following differential inequality:

dS

dt
≥ −(µ+ ν)S ⇒ dS

S
≥ −(µ+ ν) dt.

Integrating both sides yields:

S(t) ≥ S(0)e−(µ+ν)t ≥ 0.

From Equation (2), at V = 0, we have:

dV

dt

∣∣∣∣
V=0

= (1− θ)Λ + νS ≥ 0.

Similarly, we obtain:

dV

dt
≥ −µV ⇒ dV

V
≥ −µdt,

which, upon integration, gives:

V (t) ≥ V (0)e−µt ≥ 0.

Applying the same procedure to Equations (3)–(6) yields:

I(t) ≥ I(0)e−(µ+σ)t ≥ 0,

C(t) ≥ C(0)e−(µ+ρ)t ≥ 0,

M(t) ≥M(0)e−(µ+γ)t ≥ 0,

R(t) ≥ R(0)e−(µ+ω)t ≥ 0.

Since each compartment satisfies a non-negative exponential lower bound and the
vector field points inward on the boundary of the non-negative cone, it follows
that:

S(t), V (t), I(t), C(t),M(t), R(t) ≥ 0 for all t ≥ 0.

This establishes the positivity of the solutions.
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Feasible region
Define the region

Ω =

{
(S, V, I, C,M,R) ∈ R6

+ : N = S + V + I + C +M +R ≤ Λ

µ

}
.

We now show that Ω is positively invariant and attracts all feasible solutions of
the system (1)–(6). The rate of change of the total population is given by:

dN

dt
= Λ− µN.

Solving this linear ODE using an integrating factor yields:

N(t) =
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt,

where N(0) = N0. By the standard comparison theorem, it follows that:

N(t) ≤ Λ

µ
if N0 ≤

Λ

µ
.

Thus, Ω is positively invariant. Moreover, all solutions with non-negative initial
conditions eventually enter and remain in Ω. Therefore, the model is mathemati-
cally and epidemiologically well-posed in Ω.

Model steady states
Financial systemic risk-free equilibrium (RFE)

Setting the right-hand sides of (1)–(6) to zero and assuming I = 0, we find that
C = M = R = 0. Solving for S and V gives:

S0 =
θΛ

µ+ ν
, V 0 =

Λ[(1− θ)µ+ ν]

µ(µ+ ν)
.

Thus, the risk-free equilibrium (RFE) is:

E0 = (S0, V 0, 0, 0, 0, 0) =

(
θΛ

µ+ ν
,

Λ[(1− θ)µ+ ν]

µ(µ+ ν)
, 0, 0, 0, 0

)
,

with total population N0 = S0 + V 0 = Λ
µ .

4. Risk reproduction number (Rsr)
In analogy with epidemiological models, the risk reproduction number, denoted
by Rsr, represents the expected number of secondary financially distressed banks
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generated by a single infected bank introduced into an otherwise risk–free financial
system. This threshold quantity determines whether financial systemic risk dies
out or persists in the banking sector.
To derive Rsr, we employ the next–generation matrix approach [19, 20]. Let the
vector of infected–related compartments be

X = (I, C,M,R)T ,

since only these classes are directly associated with the propagation or resolution
of financial systemic risk. The system can be written in the form

dX

dt
= F(X)− V(X),

where F(X) represents the rate of appearance of new infections, and V(X) de-
notes the transition terms among infected compartments and removals. The new
infection terms are given by

F(X) =


βSI

N
0
0
0

 ,

while the remaining transfer terms are

V(X) =


(µ+ σ)I

−σI + (µ+ ρ)C
−ρC + (µ+ γ)M
−γM + (µ+ ω)R

 .

Evaluating the Jacobian matrices of F and V at the financial systemic risk–free
equilibrium

E0 = (S0, V0, 0, 0, 0, 0),

yields

F =


0

βS0

N0
0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , V =


µ+ σ 0 0 0
−σ µ+ ρ 0 0
0 −ρ µ+ γ 0
0 0 −γ µ+ ω

 .

The risk reproduction number is defined as the spectral radius of the matrix FV −1,
that is,

Rsr = ρ(FV −1).
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A direct computation yields

Rsr =
βS0

N0(µ+ σ)
. (7)

Substituting

S0 =
θΛ

µ+ ν
and N0 =

Λ

µ
,

Equation (7) simplifies to

Rsr =
βθµ

(µ+ ν)(µ+ σ)
. (8)

Expression (8) shows explicitly how regulatory interventions influence systemic risk
transmission. In particular, increasing the curatorship rate σ or the protection rate
ν reduces Rsr, thereby lowering the likelihood of sustained financial contagion.

Theorem 4.1. The financial systemic risk–free equilibrium E0 is locally asymp-
totically stable if Rsr < 1, and unstable if Rsr > 1.

Proof. The result follows directly from the next–generation matrix theory [19].
When Rsr < 1, all eigenvalues of FV −1 have modulus less than unity, implying
that perturbations away from E0 decay over time. Conversely, if Rsr > 1, at least
one eigenvalue exceeds unity, leading to the growth of financial systemic risk.

The quantity Rsr therefore serves as a fundamental threshold parameter for the
model, separating regimes of financial stability from those in which systemic risk
persists.

Theorem 4.2. The risk-free equilibrium E0 is globally asymptotically stable in Ω
if Rsr < 1.

Proof. Consider the Lyapunov function:

L = I.

Differentiating L with respect to time gives:

dL

dt
=
βSI

N
− (µ+ σ)I.

Since S ≤ N ≤ Λ
µ and S0 = θΛ

µ+ν , we have:

dL

dt
≤ (µ+ σ)(Rsr − 1)I.

Hence, dL
dt ≤ 0 when Rsr ≤ 1, and dL

dt = 0 only when I = 0. By LaSalle’s
invariance principle [21], all solutions approach the largest invariant set where
I = 0, which is E0. Therefore, E0 is globally asymptotically stable.
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Existence of the financial systemic risk endemic equilibrium
To find the endemic equilibrium, set the derivatives in (1)–(6) to zero and assume
I > 0. From (3), we obtain:

S

N
=
µ+ σ

β
.

Solving the system, we express all variables in terms of I. The endemic equilibrium
exists if and only if Rsr > 1, and is given by:

E1 = (S∗, V ∗, I∗, C∗,M∗, R∗) ,

where

I∗ = Q(Rsr − 1),

C∗ = ψ1I
∗,

M∗ = ψ2I
∗,

R∗ = ψ3I
∗,

S∗ =
θΛ + (ωψ3 − µ− σ)I∗

µ+ ν
,

V ∗ =
(1− θ)Λ + νS∗

µ
,

with
Q =

Λ(µ+ ν)(µ+ σ)(µ+ ρ)(µ+ γ)(µ+ ω)

βµ2 [(µ+ ρ)(µ+ σ)(µ+ ω) + γ(µ+ ρ)(µ+ σ) + γρω]
.

Theorem 4.3. The endemic equilibrium E1 exists if and only if Rsr > 1.

Global stability of the endemic equilibrium
We now establish the global asymptotic stability of the endemic equilibrium of the
system (1)–(6) under the following simplifying assumptions: the total population
size N is constant, i.e., Λ = µN , and there is no waning immunity, i.e., ω = 0.
Under these assumptions, the model equations reduce to:

dS

dt
= θµN − βSI

N
− (µ+ ν)S,

dV

dt
= (1− θ)µN + νS − µV,

dI

dt
=
βSI

N
− (µ+ σ)I,

dC

dt
= σI − (µ+ ρ)C,

dM

dt
= ρC − (µ+ γ)M,
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dR

dt
= γM − µR.

Theorem 4.4. Consider the reduced system under the above assumptions. Then,
the endemic equilibrium E1 = (S∗, V ∗, I∗, C∗,M∗, R∗) is globally asymptotically
stable in the interior of the feasible region {x > 0}.

Let E1 be the endemic equilibrium of the system, which exists when Rsr > 1. We
construct the following Lyapunov function:

L =
∑

x∈{S,V,I,C,M,R}

ax

( x
x∗
− 1− ln

x

x∗

)
,

where ax > 0 are constants to be determined. This function is non-negative and
equals zero if and only if x = x∗ for all compartments. It satisfies L(x∗) = 0,
L(x) > 0 for x 6= x∗, and is convex in each variable. Differentiating L along the
solutions of the system yields:

L̇ =
∑

x∈{S,V,I,C,M,R}

ax

(
1− x∗

x

)
· 1

x∗
· dx
dt
.

Using the equilibrium conditions:

θµN =
βS∗I∗

N
+ (µ+ ν)S∗,

(1− θ)µN = νS∗ + µV ∗,

β

N
= (µ+ σ)

I∗

S∗
,

µ+ ρ =
σI∗

C∗
,

µ+ γ =
ρC∗

M∗
,

µ =
γM∗

R∗
.

Define the Lyapunov function:

L =
S

S∗
− 1− ln

(
S

S∗

)
+

∑
x∈{V,I,C,M,R}

ax

( x
x∗
− 1− ln

x

x∗

)
,

and its time derivative:

L̇ = − (µ+ ν)

S∗

(
(S − S∗)2

S

)
− ψaV

V ∗
(V − V ∗) + f(S, V, I, C,M,R),

where we aim to show that f(S, V, I, C,M,R) ≤ 0. Let

u =
S

S∗
, v =

V

V ∗
, w =

I

I∗
, x =

C

C∗
, y =

M

M∗
, z =

R

R∗
,
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then

f(u, v, w, x, y, z) =
βI∗

N

(
1− 1

u
− uw + w + aV ν

S∗

V ∗

)(
u+

u

v
+

1

v
− 1

)
+ (u+ σ)aI(uw − w − u+ 1)

+ aCσ
I∗

C∗

(
w − x− w

x
+ 1
)

+ ρ
C∗

M∗

(
x− y − x

y
+ 1

)
+ γ

M∗

R∗
aR

(
y − z − y

z
+ 1
)

+
I∗

R∗
aR

(
w − z − w

z
+ 1
)
.

After simplification, we obtain:

aV =
βV ∗I∗

νNS∗
, aI =

βI∗

(µ+ σ)N
, aC = aM = aR = 0,

which reduces the expression to:

f(u, v, w, x, y, z) =
βI∗

N

(
1− 1

u
− u

v
+

1

v

)
.

Using the inequality 1− k + ln k ≤ 0, we find:

1− 1

u
− u

v
+

1

v
=
(

1− u

v

)
+

(
1− 1

u

)
−
(

1− 1

v

)
≤ − ln

(u
v

)
− ln

(
1

u

)
+ ln

(
1

v

)
= ln

(
v

u
· u · 1

v

)
= ν.

Thus,

L̇ ≤ − (µ+ ν)

S∗

(
(S − S∗)2

S

)
− µβI∗

νNS∗

(
(V − V ∗)2

V

)
.

Therefore, L̇ ≤ 0, and L̇ = 0 if and only if S = S∗, V = V ∗, I = I∗, C = C∗,M =
M∗, R = R∗. By LaSalle’s invariance principle, the omega-limit set of the solution
is an invariant set contained in

Ω = {(S, V, I, C,M,R) : S = S∗, V = V ∗, I = I∗, C = C∗,M = M∗, R = R∗}.

Thus, the only invariant set in Ω is the singleton {E1}, which implies that every
solution in R6

+ approaches the endemic equilibrium. This completes the proof.
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5. Simulations

Time series plots
We perform numerical simulations using the following initial conditions:

S(0) = 945, V (0) = 20, I(0) = 15, C(0) = 10, M(0) = 5, R(0) = 5,

for a hypothetical bank population of N = 1000. Figure 2 (a) shows the trajectory

(a) Infected banks (b) Curated banks

(c) Mitigated banks (d) Recovered banks

Figure 2: Time series plots for selected state variables at the financial risk-free
equilibrium. Parameter values used: θ = 0.9, Λ = 0.5, ω = 0.1, β = 0.5, µ =
0.009, ν = 0.0009, σ = 0.75, ρ = 0.4, γ = 0.6.

of infected banks over time. Starting with 15 infected banks, the number declines
sharply and reaches zero in less than 20 years. Figure 2 (b) illustrates the dynamics
of curated banks, which initially increase to approximately 15 within 6 years before
declining to zero shortly after 20 years. A similar pattern is observed in Figure 2 (c)
for mitigated banks. In contrast, Figure 2 (d) shows that the number of recovered
banks gradually declines to zero between 55 and 60 years.
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Impact of varying key parameters

Figure 3 presents simulations of infected banks under varying values of σ, the rate
at which infected banks are curated, while keeping all other parameters constant.
Initially, all curves follow a similar trajectory. For smaller values of σ, the in-
fected population peaks higher due to slower removal. As σ increases, the peak
diminishes, indicating more effective curatorship. After peaking, all curves exhibit
exponential decay. Additionally, reducing the infection rate β in equation (3) fur-
ther lowers the number of infected banks. Figure 4 explores the effect of varying ν,

Figure 3: Impact of varying σ on the infected banks compartment. Parameter
values: θ = 0.9, Λ = 0.5, ω = 0.01, β = 0.65, µ = 0.006, ν = 0.001, ρ = 0.6, γ =
0.8.

the rate at which banks become immune. The simulation results are qualitatively
similar to those in Figure 3, with differences primarily in the peak values. This
suggests that both curatorship (σ) and immunity (ν) play comparable roles in
reducing the infected population. Figure 5 shows the effect of varying ρ, the rate
of mitigation. All curves behave similarly up to the peak, but diverge thereafter.
Around the 20-year mark, differences in decay rates become apparent, indicating
that higher mitigation rates accelerate the decline of infected banks.
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Figure 4: Impact of varying ν on the infected banks compartment. Parameter
values: θ = 0.9, Λ = 0.5, ω = 0.01, β = 0.65, µ = 0.006, σ = 0.08, ρ = 0.6, γ =
0.8.

Contour plots

Contour plots are useful for visualizing the relationship between a response vari-
able and two independent variables. Typically, the independent variables are rep-
resented on the x- and y-axes, while the response variable is depicted through
contour levels.

In Figure 6, the independent variables are θ and µ. As µ decreases, the contours
become more closely spaced, indicating a rapid change in the reproduction num-
ber. For larger values of µ, the contours spread out, suggesting slower variation.
Figure 7 illustrates the effect of σ and ν on the reproduction number. Initially,
the level curves are tightly packed, but they become more spaced as the values of
σ and ν increase.

In the context of scalar fields, contour lines represent loci of constant function
values, meaning that every point along a given contour corresponds to the same
output of the underlying function. Importantly, the visual spacing between contour
lines does not necessarily reflect uniform changes in function values; equally spaced
contour values may yield unevenly spaced contours depending on the gradient of
the field. Regions where contour lines are closely packed indicate steep gradients
or rapid variation in the function, whereas widely spaced contours denote areas
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Figure 5: Impact of varying ρ on the infected banks compartment. Parameter
values: θ = 0.9, Λ = 0.5, ω = 0.01, β = 0.65, µ = 0.006, ν = 0.001, σ =
0.08, γ = 0.8.

of gradual change. Collectively, the set of contour values delineates the functional
range across the domain.

Sensitivity analysis
Table 2 presents the classification of correlation coefficients used to interpret the
scatter plots in Figure 8.

Figure 8 illustrates the relationship between selected model parameters and
the infected banks (I). Based on Table 2, the following observations are made:

• The first plot shows a weak positive correlation (r = 0.12) between the
recruitment rate Λ and the infected banks I, indicating that recruitment is
not strongly linked to infection.

• The second plot shows a weak negative correlation between the infected
banks I and their lifespan µ, suggesting that infection does not necessarily
lead to bank extinction.

• The third plot reveals a very strong positive correlation (r = 0.94) between
the infected banks I and the rate ω at which recovered banks become sus-
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Figure 6: Contour plot showing the impact of parameters µ (bank lifespan) and
θ (proportion recruited into the susceptible class) on the reproduction number.
Other parameter values are: Λ = 0.5, ω = 0.01, β = 0.9, ν = 0.001, σ =
0.08, ρ = 0.6, γ = 0.8.

Table 2: Correlation coefficient ranges and their interpretation for the scatter plots
in Figure 8.

Correlation Coefficient Correlation Strength Correlation Type
−0.7 to −1 Very Strong Negative
−0.5 to −0.7 Strong Negative

0 to −0.3 Weak Negative
0 to 0.3 Weak Positive

0.3 to 0.5 Moderate Positive
0.5 to 0.7 Strong Positive
0.7 to 1 Very Strong Positive

ceptible. This reflects the realistic scenario where banks do not recover with
permanent immunity.

• The final plot shows a weak negative correlation (r = −0.15) between the
infected banks I and the curation rate σ, possibly influenced by the lifespan
parameter µ.
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Figure 7: Contour plot showing the impact of parameters σ (curation rate) and
ν (immunity rate) on the reproduction number. Other parameter values are:
θ = 0.9, Λ = 0.5, ω = 0.01, β = 0.9, µ = 0.006, ρ = 0.6, γ = 0.8.

6. Discussion and conclusion

This study introduces a novel compartmental model inspired by infectious dis-
ease dynamics to analyse the spread and control of financial systemic risk among
banking institutions. By incorporating six distinct compartments, these are sus-
ceptible, immune, infected, curated, mitigated, and removed. The model captures
the complexity and heterogeneity of real-world financial contagion processes, ex-
tending previous models in the literature. The analysis reveals the existence of
two key equilibrium points. The model’s threshold parameter, the risk reproduc-
tion number Rsr, governs the long-term behaviour of the system. When Rsr < 1,
the financial system is predicted to stabilise without persistent fiancial systemic
risk. Conversely, when Rsr > 1, financial contagion is expected to persist among
banking institutions. These theoretical insights are supported by numerical sim-
ulations, which demonstrate the dynamic impact of various parameters on the
system’s trajectory.

From a policy perspective, the model highlights the importance of timely inter-
ventions, specifically, curatorship (similar to quarantine), mitigation (comparable
to treatment), and protection (analogous to vaccination in epidemiological mod-
els). Simulation results suggest that increasing the rates of mitigation and pro-
tection significantly reduces the number of infected financial institutions, thereby
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(A) Recruitment rate Λ vs. infected
banks. (B) Lifespan µ vs. infected banks.

(C) Susceptibility rate ω vs. infected
banks.

(D) Curation rate σ vs. infected
banks.

Figure 8: Scatter plots showing correlations between selected parameters and the
infected banks compartment.

lowering the overall burden of financial systemic risk. These findings offer a quanti-
tative foundation for regulatory strategies aimed at stabilising the financial sector.

This work contributes to the growing body of literature on financial contagion
by enhancing the epidemiological modelling framework with greater granularity
in state transitions and remedial actions. Future research may explore extensions
such as stochastic effects, network-based interactions, or delay differential equa-
tions to account for latent risks and time-dependent interventions. Additionally,
empirical calibration using real banking data would improve the model’s predictive
accuracy and practical relevance.

In conclusion, the extended SIRS model developed in this study provides valu-
able insights into the dynamics of financial systemic risk and underscores the crit-
ical role of proactive control measures. The mathematical framework presented
here offers a foundation for future interdisciplinary research at the intersection of
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financial economics and epidemiological modelling.
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