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Abstract

This paper introduces a verified interval iterative method for computing
the principal pth root of a square matrix along with rigorous interval en-
closures. Leveraging the epsilon inflation technique, the proposed algorithm
is reformulated as an inclusion method, enabling robust control over ap-
proximation and rounding errors in finite-precision arithmetic. The method
exhibits quadratic convergence and does not require an initial enclosure con-
taining the exact root, which is a common limitation in existing interval
approaches. We further demonstrate that the midpoint matrix sequence
generated by the iteration is well-behaved and numerically stable. Theoret-
ical analysis confirms the convergence of the interval enclosures to the exact
matrix root, and numerical experiments validate the method’s efficiency for
large-scale matrices and high values of p. As a practical contribution, we
provide implementable Mathematica code for the proposed algorithm, facil-
itating reproducibility and further exploration.
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1. Introduction
Interval analysis [1] is a vital branch of numerical computation that provides
mathematically rigorous enclosures for solving equations and controlling round-
ing, propagation, and approximation errors [2, 3]. Interval methods have found
widespread applications in various scientific and engineering domains, including
structural mechanics, beam physics, computer graphics, and computer-assisted
proofs. [4–6].

Let A ∈ Cn×n be a square matrix and p ≥ 2 be an integer. A matrix X is
called a pth root of A if Xp = A [7]. Among all such roots, the principal pth root
is of particular interest.

Theorem 1.1. Assume that A is an n × n matrix with no eigenvalue in the
negative real part of the imaginary axis. Then the principal pth root of A is the
unique pth root with eigenvalue arguments in the open interval (−π/p, π/p), and
it is a primary matrix function of A. The principal pth root of A is denoted by
A1/p.

Proof. The proof of this theorem is detailed in [7], Theorem 7.2.

Computing the pth root of a matrix A is equivalent to solving the matrix
equation Xp − A = 0 [7]. The matrix pth root problem is significant in numer-
ous applications, such as computing the sign of a matrix, polar decomposition,
geometric mean, and matrix p-sector functions [8–13].

Newton’s iterative method is widely used for finding the pth root of a square
matrix A with no eigenvalue on the left half-plane. This method is derived from
a generalized Sylvester equation [7] and is given by:

Xk+1 =
1

p

[
(p− 1)Xk +X1−p

k A
]
, X0A = AX0. (1)

The convergence of Newton’s iterative method is discussed in [7], Corollary 7.8. To
enhance the stability of Newton’s method, N. Higham [7] introduced a symmetric
form, leading to the stable iterative method:Xk+1 = Xk

(
(p−1)I+Mk

p

)
, X0 = I,

Mk+1 =
(

(p−1)I+Mk

p

)−p
Mk, M0 = A.

(2)

Since interval methods can control and enclose rounding errors, this study aims to
generalize method (2) into an interval method. Before proceeding, we introduce
the necessary notation and concepts related to interval matrices. An interval
matrix X is defined as a matrix whose elements are intervals, i.e., X = (Xij),
where Xij = [aij , bij ] for each i, j. The midpoint matrix function m(X ) is defined
as the matrix whose elements are the midpoints of the corresponding intervals in
X .
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The extended interval method for computing the pth root of a matrix A is
defined as: Xk+1 = m(Xk)− Xk

p (I −Gk),

Gk+1 =
(

(p−1)I+Gk

p

)−p
Gk,

(3)

for k = 0, 1, . . . . Here, m denotes the midpoint matrix function, and all interval
operations are performed with outward rounding to ensure that the computed
intervals contain the exact results. The initial matrices X0 and G0 should be
chosen such that m(X0) = I and G0 = A. Thus:

X0 = (Xij), where Xij = [Iij −∆ij , Iij + ∆ij ], 1 ≤ i, j ≤ n, (4)

where the matrix (∆ij) represents a positive arbitrary matrix in Mn×n(R).
The midpoint iterative method of (3) is:m(Xk+1) = m(Xk)

(
(p−1)I+Gk

p

)
, m(X0) = I,

Gk+1 =
(

(p−1)I+Gk

p

)−p
Gk, G0 = A.

(5)

If the matrix A has no eigenvalues in the left half-plane, the sequences {m(Xk)} and
{Gk} converge quadratically to A1/p and I, respectively, according to N. Higham
[7] and B. Iannazzo [14].

Inspired by the epsilon inflation technique [15, 16], the interval iterative method
is adapted to an inclusion method. Additionally, intervals are rounded to a few-
digit precision to control rounding errors. This adaptation represents the novelty
and primary goal of this study. Furthermore, the implementation of the matrix pth
root via interval extension is provided in an elegant Mathematica code, included in
the Appendix, to support the numerical demonstration of the proposed iteration.
Also, this paper demonstrates the well-behavior of the iteration (2) through its
interval extension. An advantage of the proposed interval method is that it does
not require an initial matrix containing the pth root of the given matrix, which is
a complex problem for some interval methods [17].

The paper is organized as follows: Section 2 reviews definitions and results
related to interval matrices and the epsilon inflation technique. Section 3 presents
the convergence analysis of the proposed interval iterative method, including its
order of convergence and the well-behaved nature of the midpoint matrix method.
Section 4 confirms the theoretical results through numerical examples, where the
Mathematica implementation referred to as pAlgorithm is used to compute the
principal pth root of a matrix. The corresponding code is provided in the Ap-
pendix.

2. Preliminaries
In this section, definitions and results related to interval matrices and the epsilon
inflation technique are adopted primarily from [18, 19].
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2.1 Interval matrices and their operations
Definition 2.1. The set of all real numbers defined as follows is called the interval
[a, b]:

[a, b] = {x ∈ R; a ≤ x ≤ b}. (6)

If a = b, then the interval [a, b] is called a point interval or a degenerated interval.
For two intervals [a1, a2] and [b1, b2], interval operations are calculated as follows:

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2],

[a1, a2]− [b1, b2] = [a1 − b2, a2 − b1],

[a1, a2] · [b1, b2] = [min{a1b1, a1b2, a2b1, a2b2},max{a1b1, a1b2, a2b1, a2b2}].
(7)

These definitions and operations are based on [18, 19].

Mn(I(R)) is introduced as the set of all n× n matrices whose components are
real intervals. In this study, we assume that all matrices are square matrices, i.e.,
m = n. This assumption is necessary to ensure that all operations, such as matrix
multiplication, are well-defined. An interval matrix is shown as X = (Xij), where
Xij ∈ I(R), 1 ≤ i ≤ n, and 1 ≤ j ≤ n. For A = (Aij), if all components of A, Aij ,
are point intervals, A is a point matrix which belongs to Mn(R).

Definition 2.2. Let A = (Aij) and B = (Bij) be two interval matrices and belong
to Mn(I(R)), then the following statements are valid:

A ⊆ B ⇐⇒ Aij ⊆ Bij , 1 ≤ i ≤ n, 1 ≤ j ≤ n, (8)

and, if A = (aij) is a point matrix, then

A ∈ B ⇐⇒ aij ∈ Bij , 1 ≤ i ≤ n, 1 ≤ j ≤ n. (9)

Also,
A± B = (Aij ± Bij), (10)

and if C ∈Mn(I(R)) and D ∈Mn(I(R)), then

CD = (

n∑
v=1

CivDvj). (11)

Let A = (aij) and B = (bij), belong to Mn(R). The partial order is defined by

A ≤ B ⇐⇒ aij ≤ bij , 1 ≤ i ≤ n, 1 ≤ j ≤ n, (12)

for n× n matrices (see [18, 19]).

Definition 2.3. The absolute value of an interval matrix A = (Aij) ∈Mn(I(R))
is

|A| = (|Aij |) = ( max
a∈Aij

|a|), (13)
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and the width of the interval matrix A is the following nonnegative matrix:

d(A) = (d(Aij)) = (max(Aij)−min(Aij)). (14)

The following properties are derived from the preceding relations and hold for the
absolute value and width of real interval matrices (see [18]):

1. A ⊆ B ⇒ d(A) ≤ d(B),

2. d(A± B) = d(A) + d(B),

3. d(A) = supA,B∈A |A−B|,

4. |A| = supA∈A |A|,

5. A ⊆ B ⇒ |A| ≤ |B|,

6. d(AB) = |A|d(B), d(BA) = d(B)|A|,

7. d(AB) ≤ d(A)|B|+ |A|d(B).

Definition 2.4. The Hausdorff distance between two interval matrices A and B
in Mn(I(R)) is denoted by (see [18]):

q(A,B) = (q(Aij ,Bij)) ∈Mn(R). (15)

If Aij = [a1, a2] and Bij = [b1, b2], then

q(Aij ,Bij) = max{|a1 − b1|, |a2 − b2|}. (16)

Definition 2.5. The point matrix m(A) is the midpoint matrix of the interval
matrix A = (Aij) and is obtained by (see [18]):

m(A) = (m(Aij)) =

(
max(Aij) +min(Aij)

2

)
. (17)

The following properties hold for A,B ∈Mn(I(R)) and A ∈Mn(R):

1. m(A± B) = m(A)±m(B),

2. m(AB) = Am(B), m(BA) = m(B)A,

3. m(A) = A.
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2.2 Introducing the inclusion interval method inspired by
the epsilon inflation technique

Digital devices cannot store or perform computations with an infinite set of real
numbers. They approximate real numbers using a finite set of floating-point num-
bers, represented in the form m · be, where m is the mantissa, b is the base, and
e is the exponent [17]. The set of such machine-representable numbers is denoted
by RM .
Directed rounding: Directed rounding is an essential concept in numerical com-
putations. If x is a real number, ↓ x represents downward-directed rounding, and
↑ x represents upward-directed rounding [17]. Therefore, the following inequality
holds:

↓ x ≤ fl(x) ≤↑ x. (18)

In this paper, the following Mathematica codes are used to implement directed
rounding with s-digit precision:

down[x_, s_] := N[x - 10^-s (x*10^s - Floor[x*10^s]), s];
up[x_, s_] := N[x + 10^-s (Ceiling[x*10^s] - x*10^s), s];

Machine intervals: Intervals are also rounded in digital devices. Consider a real
interval [a, b]. The machine rounding of [a, b] can be represented as:

l [a, b] = {x ∈ R; ↓ a ≤ x ≤↑ b}, a ≤ b. (19)

The set of all machine intervals is denoted by I(RM ). The interval rounding
operation has the following properties:

[a, b] ⊆l [a, b], and [a, b] ⊆ [c, d]⇒l [a, b] ⊆l [c, d]. (20)

For an interval matrix, the rounding is applied element-wise (see [17]).
Controlling rounding errors: Let x, y ∈ R, and suppose x ∈ [a, b] and y ∈ [c, d].
For any arithmetic operation ∗ ∈ {+,−, ·, /}, the following inclusion holds:

x ∗ y ∈ [a, b] ∗ [c, d] ⊆ [a, b]M ∗ [c, d]M ⊆ ([a, b]M ∗ [c, d]M )M , (21)

where [a, b]M denotes a machine interval. Thus, while x and y are unknown real
numbers, the operation x ∗ y belongs to a known machine interval. This implies
that rounding errors are well-controlled, making interval methods highly useful in
such scenarios [20].

To show the convergence of the interval method (3), we need a nested sequence
of interval matrices that contain the solution. We will derive such a sequence by
employing the epsilon inflation technique, which is inspired by Definition 4 in [16].

Definition 2.6. Let X be an n× n real interval matrix. The epsilon inflation of
X , denoted by X ◦ ε, is defined as

X ◦ ε = X + Uε(0), where 0 < ε ∈ R, (22)
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and Uε(0) is an n× n interval matrix of the form

Uε(0) = ([−εij , εij ]) , 0 < εij ∈ R, 1 ≤ i, j ≤ n. (23)

In the context of the interval iteration method (3), let Xk+1 = (X ijk+1) =(
[aijk+1, b

ij
k+1]

)
be the computed interval matrix at iteration k + 1. To apply a

uniform inflation, we define a scalar εk+1 as

εk+1 = max
1≤i,j≤n

{
max

{
aijk+1− ↓ a

ij
k+1, ↑ b

ij
k+1 − b

ij
k+1

}}
, (24)

where ↓ a and ↑ b denote the outward rounding of a and b, respectively. Then, the
matrix Uk+1

ε (0) is defined as

Uk+1
ε (0) := ([−εk+1, εk+1])n×n ,

which means that we set εij := εk+1 for all 1 ≤ i, j ≤ n to ensure a consistent
inflation across all entries. As a result, the inflated matrix is given by

X̃k+1 := Xk+1 + Uεk+1
(0), (25)

and it satisfies the inclusion relation

Xk+1 ⊆l Xk+1 ⊆ X̃k+1. (26)

Moreover, the midpoint matrix remains unchanged under this inflation:

m(Xk+1) = m(X̃k+1), for all k ≥ 0. (27)

Lemma 2.7. The sequence {Uεk(0)} converges to the zero matrix.

Proof. The bounds of each interval matrix Xk are assumed to be rounded using
directed rounding with δ-digit precision, where δ ≥ 2. Based on the update rule

εk+1 = min

{
εk+1,

εk
µ

}
, µ ≥ 2,

we have εk+1 < εk for all k. From Equation (24) and this monotonic decrease, it
follows that

Uεk+1
(0) ⊂ Uεk(0), for all k. (28)

Hence, the sequence {Uεk(0)} is nested. Since 0 ∈ Uεk(0) for every k, and applying
Corollary 8.10 of [17] together with Theorem 3.10 of [21], we conclude that the
intersection of this nested sequence converges to the zero matrix.

Corollary 8.10 of [17]. Let {Ak}∞k=0 be a sequence of m× n interval matrices
such that

A0 ⊇ A1 ⊇ A2 ⊇ · · · (29)
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Then the sequence converges to an interval matrix A =
⋂∞
k=0Ak.

Theorem 3.10 of [21]. Let {Kn} be a sequence of compact sets in a topological
space such that Kn+1 ⊂ Kn and limn→∞ diam(Kn) = 0. Then

⋂∞
n=1Kn is a

singleton.
Inclusion method:
Now, the interval method (3) can be rewritten as follows:


X̃k+1 = m(Xk)− X̃k

p
(I −Gk) + Uεk+1

, m(X̃0) = m(X0) = I,

Gk+1 =

(
(p− 1)I +Gk

p

)−p
Gk, G0 = A,

(30)

for every k = 0, 1, . . . . By relation (27), the midpoint sequence of the method
(30) is the same as (5). In the next section, we will prove that the method (30) is
an inclusion interval method. Since the sequence {Uεk(0)} converges to zero, the
method (30) eventually reduces to the method (3). Thus, the convergence of the
method (3) is analogous to the convergence of (30).

3. Main results

In this section, the convergence analysis of the proposed method (30) is studied.
Based on the relation (27), the midpoint iterative method of (30) is equivalent to
(5). Therefore, the lemmas and theorem, which also hold for midpoint sequence
of (30), are necessary to obtain the convergence of the method (30).

Lemma 3.1. Let X0 be an interval matrix so that m(X0) = I, and A is a square
matrix whose all eigenvalues are in R+. In addition, G0 = A. For the sequences
{Xk} and {Gk} generated by the iterative method (3), the following statements are
true for every k ≥ 0,

(a) AGk = GkA,

(b) Am(Xk) = m(Xk)A,

(c) Gk = m(Xk)−pA.

Proof. (a): For indicating this part, induction on k is used. For k = 0, (a) is
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trivial, and for k = n, assume that it is true. For k = n+ 1, it is obtained that

AG−1n+1 = AG−1n (
(p− 1)I +Gn

p
)p

=
1

pp
AG−1n

i=p∑
i=0

(
p

i

)
(p− 1)iGp−in

=
1

pp

i=p∑
i=0

(
p

i

)
(p− 1)iGp−i−1n A

= G−1n+1A.

(31)

Based on the Corollary 1.41 of [7], if λi is an ordering of eigenvalues of Gk, for
every k, then the following relation is obtained:

λi(Gk+1) = pp
λi(Gk)

((p− 1) + λi(Gk))p
. (32)

Thus, with induction on k, if all of the eigenvalues of A are non-zero, then Gk is
invertible for every k.
(b): This study shows part (b) by induction on k. For k = 0, if m(X0) = I, then
it will be clear. Then this study assumes that (b) is true for k = n. For k = n+ 1,
it is deduced that

Am(Xn+1) = Am(Xn)− Am(Xn)

p
(I −Gn)

= m(Xn)A− m(Xn)

p
(A−GnA)

= m(Xn)A− m(Xn)

p
(I −Gn)A

= m(Xn+1)A.

(33)

(c): First we need to prove the relation Gkm(Xk) = m(Xk)Gk for every k ≥ 0. It
can be shown easily by induction on k. Next, again by induction on k, it can be
indicated that:

Gk = m(Xk)−pA. (34)

Obviously, the induction holds for k = 0. For k = n, it can be assumed that
relation (34) is true. For k = n+ 1, it can be obtained that:

Gn+1 = (
(p− 1)I +Gn

p
)−pGn

= (
(p− 1)I +Gn

p
)−pm(Xn)−pA

= m(Xn+1)−pA.

(35)
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Lemma 3.2. For a real n×n matrix A, |A| = (|aij |) denotes nonnegative matrix
(|aij | ≥ 0 for every i, j). For A,B ∈ Rn×n, if |A| ≤ B, then

ρ(A) ≤ ρ(|A|) ≤ ρ(B) ≤ ||B||, (36)

where ||.|| is any consistent matrix norm, and ρ denotes the spectral radius.

Proof. Refer to the book of N. Higham [7].

Corollary 3.3. ([22]). Let D be an invertible matrix. Then ||D−1|| = 1√
λ
, where

λ represents the smallest eigenvalue of D∗D. D∗ is the conjugate transpose of the
matrix D.

Theorem 3.4. Let {Gk} be the matrix sequence generated by (3). Assume G0 =
A, where A is a square matrix with eigenvalues only in R+. Hence, the sequence
{Gk} converges to the identity matrix I with order of convergence 2 and the spectral
radius of I −Gk is smaller than 1 for every k.

Proof. The expression I −Gk+1 is simplified as follows:

I −Gk+1 = (I −
1

p
(I −Gk))

−p((I −
1

p
(I −Gk))

p −Gk)

= (I −
1

p
(I −Gk))

−p(

p∑
i=0

(p
i

)
(
I −Gk

−p
)i −Gk)

= (I −
1

p
(I −Gk))

−p(

p∑
i=2

(p
i

)
(
I −Gk

−p
)i−2)(

I −Gk

p
)2

= (I −
1

p
(I −Gk))

−p(

p−2∑
i=0

( p

i+ 2

)
(
I −Gk

−p
)i)(

I −Gk

p
)2

= (I −
1

p
(I −Gk))

−p(

p−2∑
i=0

p(p− 1)

(i+ 2)(i+ 1)

(p− 2

i

)
(
I −Gk

−p
)i)(

I −Gk

p
)2.

(37)

Hence, by 1
(i+2)(i+1) ≤

1
2 , it is obtained

I −Gk+1 ≤
1

2
p(p− 1)((p− 1)I +Gk)−2(I −Gk)2. (38)

Taking norm and considering the Euclidean norm, it is obtained that

||I −Gk+1|| ≤
1

2
p(p− 1)||((p− 1)I +Gk)−1||2||I −Gk||2. (39)

By the Corollary 3.3, it can be obtained:

||((p− 1)I +Gk)−1|| = 1√
λ
, (40)
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where λ is the smallest eigenvalue of G = ((p − 1)I + Gk)∗((p − 1)I + Gk). It
can be easily indicated that all of the eigenvalues of G are greater than (p − 1)2.
Hence, it can be concluded that:

||I −Gk+1|| ≤
p

2(p− 1)
||I −Gk||2, (41)

and for k > 0, we deduce

||I −Gk+1|| ≤ (
p

2(p− 1)
)k||I −G0||2

k

. (42)

Based on Lemma 3.2, it is concluded that

ρ(I −Gk+1) ≤ ||I −Gk+1|| ≤ (
p

2(p− 1)
)k||I −G0||2

k

, (43)

therefore,

ρ(

n∏
k=i

(I−Gk)) ≤
n∏
k=i

ρ(I−Gk) ≤ (
p

2(p− 1)
)

(n−i)(n+i−1)
2 +i−1||I−G0||2

n−2i−1

. (44)

If ||I−G0|| < 1, then ρ(
∏n
k=i(I−Gk)) < 1 for every n ≥ 0 and i ≥ 0. In addition,

it is concluded that {Gk} converges quadratically to the matrix I.

Corollary 3.5. Let {X̃k} be the interval matrix sequence that generated by (30).
If the hypotheses of Theorem 3.4 hold, then the sequence {m(X̃k)} converges to
A

1
p .

Proof. Based on the 3th part of Lemma 3.1, when Gk converges to the identity
matrix, the sequence {m(X̃k)p} converges to the matrix A. Using the Corollary
1.41 of [7] and an ordering of eigenvalues of Gk and m(X̃k) (m(X̃k) = m(Xk)), we
have

λi(m(Xk+1)) = λi(m(Xk))
(p− 1) + λi(Gk)

p
. (45)

Hence, by induction on k, because m(X0) and G0 have positive eigenvalues, m(Xk)
has also positive eigenvalues for every k. Hence, by considering m(Xk) as the pth
root of the matrix m(Xk)p, the sequence {m(Xk)} converges to the matrix A

1
p .

Note 1. If the hypotheses of the Theorem 3.4 hold, the matrix ((p − 1)I + Gk)p

is well-condition for each p = 2, 3, · · · .
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Proof. Using relation (40) and (44), a bound for condition number of the matrix
((p− 1)I +Gk)p is calculated as follows:

cond(((p− 1)I +Gk)p) =||((p− 1)I +Gk)p||||(((p− 1)I +Gk)−1)p||
≤||(p− 1)I +Gk||p||((p− 1)I +Gk)−1||p

≤||pI + (I −Gk)||p( 1

p− 1
)p

≤(
p+ 1

p− 1
)p.

(46)

A simple computation shows that the sequence ( p+1
p−1 )p for p = 2, 3, · · · is a de-

creasing sequence that converges to e2. Therefore, the matrices ((p − 1)I + Gk)p

are well-condition matrices.

Note 2. Using the second step of the method (30), the norm of the point matrix
Gk+1 can be estimated as follows:

||Gk+1|| ≤ pp||((p− 1)I +Gk)−1||p||Gk||.

By the convergence Gk to I, there is a natural number N such that for k > N , it
can be concluded:

||Gk+1|| ≤ ||Gk||.

3.1 Interval convergence

For proving the next theorem, the following relations are defined:

Ck =
I −Gk
p

, f(X̃k) = m(X̃k)− X̃kCk, X̃k+1 = f(X̃k) + Uεk+1
(0), (47)

based on the relation (28) and the interval method (30). Since the midpoint map
and multiplication of matrices are continuous, it is clear that the function f is
continuous. Also, epsilon inflation method needs to continuous functions [15].
Thus, the following theorem can be explained.

Theorem 3.6. Let {X̃k} be an interval sequence generating by the interval method
(30), and m(X0) = I, where I represents the identity matrix. Also, let A be a
square matrix without any non-positive eigenvalues, ||I −A|| < 1, εk+1 <

εk
2
, and

Uεk+1
(0) ⊂ Uεk(0). Thus, for some t ≥ 0, there is an inclusion for the interval

sequence {X̃k} when k ≥ t, that is

X̃t ⊃ X̃t+1 ⊃ X̃t+2 ⊃ . . . . (48)
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Proof. Based on the relations (47), for k = 1, it is clear that the following relation
is true:

X̃k = m(X̃k−1)+Uεk(0)+

k−2∑
i=0

(−1)i+1(m(X̃i)+Uεi+1
(0))

k−1∏
j=i+1

Cj+(−1)kX̃0

k−1∏
j=0

Cj .

(49)
Based on the induction on k, it is obtained that

X̃k+1 = m(X̃k)−

{
m(X̃k−1) + Uεk(0) +

k−2∑
i=0

(−1)i+1
(
m(X̃i) + Uεi+1

(0)
) k−1∏
j=i+1

Cj

+ (−1)kX̃0

k−1∏
j=0

Cj

}
Ck + Uεk+1

(0). (50)

or,

X̃k+1 = m(X̃k)+Uεk+1
(0)+

k−1∑
i=0

(−1)i(m(X̃i)+Uεi+1
(0))

k∏
j=i+1

Cj+(−1)k+1X̃0

k∏
j=0

Cj .

(51)
According to the method (2.5), the sequence {m(X̃k)} is a convergent sequence,
and based on the relation (44),

∏k
i=j Ci is a contracting matrix for each k and

0 ≤ i ≤ k, hence there is t ≥ 0 such that

m(X̃t)−m(X̃t−1) + (−1)t−1(m(X̃t−1) + Uεt(0))Ct

+

t−2∑
i=0

(−1)i{(m(X̃i) + Uεi+1(0))

t∏
j=i+1

Cj + (m(X̃i) + Uεi+1(0))

t−1∏
j=0

Cj}

+ (−1)t+1(X̃0

t∏
j=i+1

Cj + X̃0

t−1∏
j=0

Cj)

⊆ Uεt+1(0),

(52)

because Uεt+1
(0) is a neighborhood of zero. Then, following S. M. Rump’s result

in [15] with εt+1 <
εt
2
, and applying the general set inclusion principle (that for
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any sets A,B,C, the relation A−B ⊆ C implies that A ⊆ B + C), we obtain:

Uεt+1
(0) +m(X̃t) +

t−1∑
i=0

(−1)i(m(X̃i) + Uεi+1
(0))

t∏
j=i+1

Cj + (−1)t+1X̃0

t∏
j=0

Cj

⊆ Uεt+1(0) + Uεt+1(0) +m(X̃t−1) +

t−2∑
i=0

(m(X̃i) + Uεi+1(0))

t−1∏
j=i+1

Cj + (−1)tX̃0

t−1∏
j=0

Cj

⊂ Uεt(0) +m(X̃t−1) +

t−2∑
i=0

(m(X̃i) + Uεi+1(0))

t−1∏
j=i+1

Cj + (−1)tX̃0

t−1∏
j=0

Cj ,

(53)

or
X̃t+1 ⊂ X̃t. (54)

It is clear that this result can be true for every k ≥ t. Thus, there is an inclusion
for the interval sequence {X̃k} when k ≥ t.

Lemma 3.7. If the hypotheses of Theorem 3.6 hold, the interval sequence {X̃k}
converges to A

1
p with order of convergence two.

Proof. As there is an inclusion for the interval sequence {X̃k} when k ≥ t, then

it converges to
∞⋂
k=t

X̃k by Corollary 8.10 of [17]. Also, m(X̃k) converges to A
1
p by

Corollary 3.5. Thus, there is N > 0 such that for k ≥ N and arbitrary εk ≤ d(X̃k)
2 ,

the following estimate holds:

A
1
p ∈ m(X̃k) + (−εk, εk) ⊆ m(X̃k) + (−d(X̃k)/2, d(X̃k)/2).

So, for k ≥ N the matrix A
1
p belongs to interval matrix X̃k. For t that obtained

above, if t ≥ N , then A
1
p ∈ X̃t. Also, if N ≥ t, then X̃t ⊇ X̃N 3 A

1
p . Therefore,

the iterate X̃t, which includes A
1
p , is easily achieved by examining the inclusion

relationship. On the other hand, because

X̃t ⊇ X̃t+1 ⊇ · · · ⊇ X̃N−1 ⊇ X̃N 3 A
1
p ,

the relation A
1
p ∈

∞⋂
k=t

X̃k is concluded, and so later iterates can be considered as

more rigorous iterate including the matrix A
1
p .

Based on the first step of method (30) and relation (6) of Definition 2.3, the width
of the Xk+1 is computed as follows:

d(X̃k+1) =
d(X̃k)

p
|I −Gk|+ 2εk+1. (55)
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If Theorem 3.4 and Lemma 2.7 are used, it can be deduced that the sequence
{d(Xk)} converges to the zero matrix. Also, for every k ≥ t

d(

∞⋂
k=t

X̃k) ≤ d(X̃k). (56)

Hence, d(

∞⋂
k=t

X̃k) = 0 and
∞⋂
k=t

X̃k = A
1
p . So, it is proved that the sequence {X̃k}

converges to A
1
p .

For obtaining the order of convergence, relation (55) and Lemma 3.1 are used.
Moreover, A

1
p ∈ X̃k implies that A ∈ X̃ pk . Hence, by 7th part of Definition 2.3 and

Corollary 3.5, for k ≥ t

||d(X̃k+1)|| = ||d(X̃k)||
p

|||I −m(X̃k)−pA|||+ 2εk+1

≤ ||d(X̃k)||
p

|||m(X̃k)−p|||||m(X̃k)p −A||+ 2
εk
µ

≤ ||d(X̃k)||
p

|||m(X̃k)−p|||||m(X̃k)p − X̃ pk ||+ 2
ε1
µk
, (ε1 < 0.5)

≤ ||d(X̃k)||
p

|||m(X̃k)−p|||||d(X̃ pk )||+ 1

µk

≤ ||d(X̃k)||
p

|||(A
1
p + ε)−p|||||(|X̃k|+ |X̃k|2 + · · ·+ |X̃k|p−1|)d(X̃k)||+ 1

µk
.

(57)

Because k > t and A
1
p ∈ X̃k, we have |X̃k| < A

1
p + d(X̃k)/2 < A

1
p + ε. Also, we

set C = 1
p |||(A

1
p + ε)−p|||||((A

1
p + ε) + (A

1
p + ε)2 + · · ·+ (A

1
p + ε)p−1|||. As k or µ

gets larger, 1
µk can be ignored, and

||d(X̃k+1)|| ≤ C||d(X̃k)||2, k > t. (58)

If ||.|| is the Euclidean norm, and ||.||′ is another norm for matrix B,

||B||′γ1 ≤ ||B|| ≤ ||B||′γ2,

where γ1 and γ2 are positive constants, then

||d(X̃k+1)||′γ1 ≤ Cγ2||d(X̃k)||′2, k > t. (59)

Thus, by a Theorem of appendix [17], this study concludes that the order of
convergence is almost 2.
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3.2 Well-behavior of iterations of the midpoint sequence of
the interval method (30)
Definition 3.8 (well-behaved iterative method). An iterative method (5) will be
called well-behaved if there is the sequences {δXk} and {δdk} such that

lim
k
||F (m(Xk) + δXk;A+ δdk)|| = O(%2), (60)

and
||δXk|| ≤ k1%||m(Xk)||, ||δdk|| ≤ k2%||A||, (61)

for large k, where k1 and k2 are constants, and can only depend on the dimension
of the matrix A while % is the relative computer precision.

Woźniakowski [23, 24] demonstrated that if an iterative method exhibits well-
behaved characteristics, then it is numerically stable; however, the converse does
not generally hold. Higham discussed the numerical stability of the matrix iterative
method (2) in Definition 4.17 of [7]. In contrast, the present study establishes the
well-behaved nature of the matrix iterative method (5) (or (2)), from which its
numerical stability is subsequently inferred. In other words, the numerical stability
achieved in this study is a consequence of the proposed method itself, and the
approach is entirely distinct from and independent of Higham’s framework.
Now, the equation F (X;A) = Xp − A = 0 is considered. Let A be a square
matrix with eigenvalues on the right hand side of imaginary axis, and p be an
integer number where p ≥ 2. Let the matrix sequence m(Xk) be computed by the
iterative method (5), and m(Xk) be successive approximations of A

1
p .

Theorem 3.9. Let {m(Xk)} be the matrix sequence generated by the method (5).
The iterative method (5) for the midpoints of the interval sequence {X̃k} is a well-
behaved iterative method, and therefore, is a numerical stable iterative method.

Proof. Based on the Definition 3.8, this study should identify {δXk} and {δdk}.

This study defines δXk =
d(X̃k)

2
and δdk = p%

||Gk||
2

where d(X̃k) and ||Gk|| are
identified as before. Using the convergence the matrix sequence {d(X̃k)} to zero
matrix, there exists a natural number N for ε = %||m(Xk)|| such that

||d(X̃k)|| < %||m(Xk)||, k > N. (62)

For matrix B, if we suppose ||B|| = maxi,j |Bij | and k1 = 1
2 , then it can be

obtained for k > N

||δXk|| ≤ k1%||m(Xk)||. (63)

Also, using Note 2 and k2 = p
2 , it can be deduced that:

||δdk|| ≤ k2%||G0|| = k2%||A||. (64)
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Now, F (m(Xk) + δXk;A+ δdk) can be computed as follows:

F (m(Xk) + δXk;A+ δdk) = (m(Xk) + δXk)p − (A+ δdk). (65)

For large k, using (3.6), A
1
p belongs to the interval Xk, and it can be deduced:

||(m(Xk) + δXk)p|| ≤ ||(m(Xk) + δXk)||p

≤ (||m(Xk)||+ ||δXk||)p

= ||m(Xk)||p + p||m(Xk)||p−1k1%||m(Xk)||+O(%2)

= ||A||+ %
p

2
||A||+O(%2).

(66)

Hence, by converging the interval sequence {Xk}, it can be obtained:

lim
k
||F (m(Xk) + δXk;A+ δdk)|| = lim

k
(||(m(Xk) + δXk)p||− ||(A+ δdk)||) = O(%2).

(67)
Thus, by Definition 3.8, the successive iterations of the sequence {m(Xk)} are
well-behaved and based on Woźniakowski [23] is numerical stable.

4. Numerical examples
This section justifies the validity of the obtained theoretical results by some nu-
merical examples. In these examples, the pth root of a given matrix A is computed
for various values of p using a Mathematica implementation referred to as pAlgo-
rithm, which is provided in the Appendix. The calculated roots are the principal
pth root. To this end, this study shows the eigenvalues of A

1
p are in the segment

{z ∈ C;−πp < arg(z) < π
p }. In addition, the approximate computational order of

convergence (ACOC) is calculated by this formula (see [25–27]):

ACOC =
ln( ||Xk+1−Xk||
||Xk−Xk−1|| )

ln( ||Xk−Xk−1||
||Xk−1−Xk−2|| )

. (68)

Example 4.1. Consider the following matrix

A_n = Table[0.3/(i - j + 0.3), {i, 1, n}, {j, 1, n}],

which has the dimension n. The pth root of the matrix An is computed by the
Mathematica code, pAlgorithm, for arbitrary p and n such as p = 3, 5, 18, 2000, 2763, 3560
and n = 15, 40, 78, 500, 600, 1000. The eigenvalues of An are in the right half-plane,
and ||I − An||2 is computed. The Mathematica routine inverse, which is invoked
in pAlgorithm can generate the inverse of well-condition matrices to the maxi-
mum precision given the input. Using Note 1, the matrix ((p − 1)I + Gk)p is
well-condition for each p = 2, 3, · · · .
Also, µ and δ which were introduced in Lemma 2.7 can be arbitrary considered 2
or greater than 2. The initial matrix X0 considered as follows:
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Table[Interval[{IdentityMatrix[n][[i, j]]-u/2,IdentityMatrix[n][[i,j]]
+u/2}], {i, 1,Length[A_n]}, {j, 1, Length[A_n]}];

The arbitrary value u is considered the width of X0, and t the smallest iteration
that X̃t+1 ⊂ X̃t is true. In Table 1, the error of computation and ACOC are
also shown.The tolerance1 and tolerance2 are selected 10−10 and 10−5 arbitrarily.
In formula (68), for the computation of ACOCd, Xk is considered d(X̃k) and for
ACOCm, Xk is considered m(X̃k).

Table 1: Results for the computation of pth root of matrix An.
n p u t δ k ACOCd ACOCm ||m(X̃k)p −A||2 ||d(X̃k)||2 εk ||I −An||2 M
15 3 2 0 7 5 1.9954 2.0049 6.2506e-18 3.5740e-9 2.7269e-11 0.85992 50
15 3560 2 0 5 5 1.8782 2.0043 2.92042e-12 2.99579e-8 9.98596e-10 0.85991 50
40 5 10 0 5 5 1.5472 2.0009 5.2321e-14 8.0003e-8 9.99983e-10 0.93623 70
40 2000 3 3 5 5 1.5032 2.0008 6.71925e-11 7.99294e-8 9.99118e-10 0.93621 70
78 18 5 0 7 5 1.5939 2.0168 2.9296e-11 9.7494e-7 6.2496e-9 0.96190 60
500 3 2 0 9 6 1.6124 2.0015 4.9144e-13 3.1482e-6 5.7431e-11 0.98789 50
600 2763 5 2 9 6 1.6018 2.0010 1.4738e-13 5.2713e-6 4.3934e-11 0.98881 50
1000 5 2 3 9 8 1.5238 2.0061 5.3072e-12 2.1536e-6 3.5674e-11 0.99068 60

Table 1 presents the numerical results obtained for the computation of the p-
th root of matrix An under various choices of parameters n, p, and u. This table
reports key quantities such as the number of iterations k, contraction index t, error
measures, and average computational order of convergence (ACOC), using both
the diameter and midpoint of the computed interval enclosures. The following
observations are made from the results:

• Effect of matrix size n: As the size of the matrix increases (e.g., from
n = 15 to n = 1000), the method maintains a high level of accuracy, with
the normed error ‖m(X̃k)p − A‖2 remaining within acceptable limits (e.g.,
10−12 or smaller). Notably, the values of ACOCm remain close to 2 across
different sizes, indicating consistent second-order convergence regardless of
matrix dimension.

• Effect of root order p: In some cases, extremely high values of p were
selected (e.g., p = 2000 and p = 2763). Despite this, both the convergence
behavior and error metrics remain stable. For instance, the pair n = 40,
p = 5 and n = 40, p = 2000 yield very similar errors and convergence orders,
demonstrating that the method is robust with respect to variations in the
root order p.

• Behavior of the contraction index t: In most entries, the contraction
property X̃t+1 ⊂ X̃t is achieved at t = 0, suggesting rapid entry into the
convergence regime. Only in a few cases, such as when n = 40, p = 2000
or n = 1000, p = 5, does t increase to 2 or 3. This indicates that for large
matrices or high root orders, the onset of contraction may be slightly delayed,
although convergence is still achieved reliably.
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• Control of numerical accuracy: The computed errors εk are consistently
smaller than the prescribed tolerance (10−5), with many results showing
errors as low as 10−11 or better. The number of decimal digits δ used in
directed rounding varies between 5 and 9, suggesting a moderate precision
requirement that scales with the problem size.

• Role of initial width u: The parameter u, representing the width of the
initial set X0, varies between 2 and 10. Larger values of u sometimes lead
to a slight increase in the iteration count k (e.g., u = 10 and k = 8), though
the overall convergence behavior remains unaffected. This indicates that
the method is not highly sensitive to the choice of u, provided it is chosen
reasonably.

In conclusion, the method demonstrates robust and efficient convergence behavior
across a wide range of matrix sizes and root orders. The consistent values of
ACOCm and low error norms support the reliability of the algorithm. These
results highlight the method’s potential for solving high-dimensional matrix root
problems with controlled accuracy and predictable convergence properties.

4.1 Spectral symmetry in the principal matrix root

According to Theorem 1.1, the principal pth root of a matrix A is the unique pth
root whose eigenvalues lie in the open sector (−π/p, π/p) and is defined as a prin-
cipal matrix function. This spectral constraint induces a characteristic symmetry
in the eigenvalue arguments of real matrices.

In Table 2, it is observed that the maximum and minimum arguments of the
eigenvalues of A1/p

n are equal in magnitude but opposite in sign. This behavior is
both correct and theoretically expected. It arises from the conjugate symmetry
property of complex eigenvalues in real matrices. Specifically, if An is a real matrix
and λ = reiθ is a complex eigenvalue, then its complex conjugate λ̄ = re−iθ is also
an eigenvalue. As a result, the eigenvalues of A1/p

n become r1/peiθ/p and r1/pe−iθ/p,
respectively, reflecting symmetry of arguments about the real axis.

Hence, the values reported in Table 2, where the maximum and minimum
arguments differ only in sign, are accurate and confirm the correctness of the
numerical procedure. This symmetry is a direct consequence of the structure of
real matrices and aligns with the theoretical behavior of the principal matrix pth
root.

Example 4.2. (Ill-Conditioned Symmetric Matrix.) We consider the following
matrix:

B =
1

30


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 . (69)
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Table 2: Maximum and Minimum of the Arguments of eigenvalues of the pth root
of the matrix An.

n p Maximum Minimum π
p

15 3 0.26777 -0.26777 1.0472
15 3560 0.000225 -0.000225 0.000882
40 5 0.176521 -0.176521 0.62831
40 2000 0.00044 -0.00044 0.00157
78 18 0.05051 -0.05051 0.17453
500 3 0.312106 -0.312106 1.0472
600 2763 0.000339 -0.000339 0.001137
1000 5 0.187844 -0.187844 0.62831

Matrix B is a scaled version of the Wilson matrix, which is symmetric, positive
definite, and moderately ill-conditioned with condition number 2984. We compute
the pth root of matrix B for various values of p. The eigenvalues of B are:

{1.00962, 0.128602, 0.0281036, 0.000338335},

and ‖I − B‖2 = 0.999662 < 1, which ensures that the matrix is sufficiently close
to the identity to satisfy the assumptions of the algorithm.

Within the Mathematica code referred to as pAlgorithm, the initial interval
matrix X0 is initialized as:

Table[Interval[{IdentityMatrix[4][[i, j]] - u/2,
IdentityMatrix[4][[i, j]] + u/2}],{i, 1, 4}, {j, 1, 4}];

This allows us to initialize a neighborhood around the identity matrix, which
facilitates convergence.

We compute the average computational order of convergence (ACOC) for the
sequences {m(X̃k)} and {d(X̃k)}, and the 2-norm of d(X̃k) as presented in Table 3.
The tolerance1 and tolerance2 are selected 10−10 and 10−5 arbitrarily. In addition,
we examine the arguments of the eigenvalues of the computed pth root. Since the
matrix B is symmetric positive definite, all its eigenvalues are real and positive.
Therefore, all arguments of the eigenvalues of its pth roots are zero, confirming
that the computed roots are indeed principal. The results in Table 3 highlight
the effectiveness and robustness of the proposed method for computing the pth
root of matrices, even for ill-conditioned cases such as matrix B. Key observations
include:

• Effect of increasing p: As the root order p increases from 2 to 2560, we
observe that the number of iterations k remains moderate (between 9 and
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Table 3: Results for the computation of pth root of matrix B by k iterations (i+ δ
digits are used for rounding in ith iteration).

p k u t δ ACOCd ACOCm ||m(X̃k)p −B||2 ||d(X̃k)||2 εk Timing M

2 9 2 1 10 2.08 1.99 8.92075e-12 5.85220e-8 9.55832e-19 0.015625 30
8 14 2 14 10 1.96 2.00 0.0725e-48 7.51587e-23 9.39483e-24 0.046875 50
22 14 5 14 5 1.92 2.00 0.0085e-47 7.29347e-18 9.11684e-19 0.046875 50
560 15 2 14 20 1.80 2.00 2.52918e-37 7.30765e-34 9.13457e-35 0.0625 50
2560 14 2 14 10 1.76 2.00 0.0093e-43 6.76083e-23 8.45104e-24 0.046875 50

15), suggesting good scalability of the method. Additionally, the norm of
the residual error ‖m(X̃k)p − B‖2 stays at extremely low levels, confirming
the effectiveness of the method for large p.

• Role of initial interval width u: The parameter u controls the width
of the initial interval matrix X0. Smaller values are used in most cases to
ensure that the initial guess is close to the identity, thus facilitating rapid
convergence.

• Convergence behavior: The approximate computational orders of con-
vergence (ACOCd and ACOCm) remain consistently close to 2 for all tested
values of p, confirming near quadratic convergence of the algorithm. This
highlights the efficiency and robustness of the method even for large and
ill-conditioned matrices.

• Error metrics and stability: The residual error ‖m(X̃k)p −B‖2 achieves
values as small as 10−48 or even 10−43, and the diameter norm ‖d(X̃k)‖2
also remains small across all values of p. These metrics confirm both the
accuracy of the computed root and the tightness of the interval enclosures,
thus verifying the robustness of the interval arithmetic.

• Tolerance and precision settings: The tolerances tolerance1 = 10−10

and tolerance2 = 10−5 are fixed for all experiments. To compensate for
increased complexity at higher p, the rounding parameter δ is adjusted dy-
namically. This trade-off between precision and computational cost ensures
reliable convergence without excessive iterations or numerical instability.

• Principal root verification: For all tested values of p, the eigenvalues of
the computed matrix roots are real and positive, with arguments equal to
zero. This guarantees that the method consistently yields the principal pth
root, as theoretically expected for symmetric positive definite matrices like
B.

In summary, Table 3 demonstrates that the proposed interval-based iterative algo-
rithm is capable of accurately computing the pth root of an ill-conditioned matrix
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for a wide range of p, with controlled precision, consistent convergence, and mini-
mal error. The input parameters u, δ, and the stopping tolerances play key roles
in balancing convergence speed and numerical robustness.

4.2 Comparison with existing methods for matrix pth root
computation

Among the test examples considered, we specifically select the symmetric positive
definite matrix defined in the relation (69) (previously discussed in Example 4.2
with emphasis on its ill–conditioning) to further demonstrate the accuracy, effi-
ciency, and generalizability of the proposed interval-based method through com-
parative analysis.

We first compute the principal square root B1/2 using several classical methods
discussed in Ref. [13], including Newton iteration, Denman–Beavers (DB) itera-
tion, Product Denman–Beavers (PDB), and Newton–Schulz iteration. The re-
sults obtained from these methods are then compared with those of the proposed
interval-based method.

It is worth noting that these classical techniques are specifically designed for
computing square roots of matrices and are not directly applicable to general pth
roots. Therefore, to evaluate the flexibility and scalability of our method, we
extend the computations to higher-order arbitrary roots with p = 22, p = 560,
and p = 2560. For this purpose, we implement a generalized Newton iteration as
described in Equation (1), and compare its performance with our interval-based
approach Table 4 presents the spectral norm of the residual error ‖Xp −B‖2, the
number of iterations performed, and the precision level M (used in SetAccuracy)
employed in each computation. Here, I denotes the 4 × 4 identity matrix. The

Table 4: Comparison of methods for computing B1/p for p = 2, 22, 560, 2560.
p Initial Guess X0 Method Iterations ‖Xp −B‖2 Timing M

2 B Newton [13] 9 8.92075e-12 0.015625 50
2 B Denman–Beavers [13] 9 8.92075e-12 0.015625 50
2 B Product Denman–Beavers [13] 9 8.92075e-12 0.046875 50
2 B Newton–Schulz [13] 14 3.41231e-13 0.03125 50
22 I Generalized Newton method (1) 12 8.21646e-16 0.046875 50
560 I Generalized Newton method (1) 12 3.12008e-14 0.015625 50
2560 I Generalized Newton method (1) 12 3.47158e-14 0.046875 50

comparison between Tables 3 and 4 highlights several advantages of the proposed
interval-based method. In the special case of p = 2, i.e., computing the matrix
square root, the residual error achieved by our interval approach is comparable to
that of classical methods reported in [13]. However, unlike point-based algorithms
that return a single approximate matrix, our method computes an interval matrix
that rigorously encloses the exact root. This feature ensures controlled round-off
error and enhances numerical reliability.
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Importantly, this advantage is not limited to the case p = 2. For higher values
such as p = 22, p = 560, and p = 2560, the same level of accuracy and reliability
is maintained. By employing a generalized Newton iteration within an interval
framework, we successfully compute the pth root for arbitrary p > 1 with moderate
computational cost. As recorded in Table 3, the execution times of our method are
comparable to those of non-interval methods and do not incur significant additional
overhead.

In summary, the proposed method achieves both high accuracy and verified
enclosures for matrix pth roots, while maintaining computational efficiency and
controlling rounding errors–a combination that is difficult to achieve using classi-
cal floating-point approaches. These features make our method particularly well-
suited for applications where both reliability and generality are critical, such as
verified computing, control theory, and the numerical solution of matrix equations.

Note 3. [Application of matrix pth root in solving differential equations]
In this study, the matrix pth root plays a crucial role in solving certain initial

value problems involving matrix functions. As recalled from the theorem by Davies
and Higham [28], the solution to the initial value problem

dy

dw
= α(A− I)[w(A− I) + I]−1y, y(0) = b, 0 ≤ w ≤ 1, (70)

is given by
y(w) = [w(A− I) + I]αb,

with the unique solution y(w) = [w(A− I) + I]αb, where y(1) = Aαb..

This problem arises in various applications, including control theory, signal
processing, and systems governed by fractional dynamics, where matrix functions
such as fractional powers and roots of matrices are fundamental.

Computing the matrix pth root A1/p accurately and efficiently is essential in
these contexts because it enables direct evaluation of solutions involving fractional
powers of matrices without resorting to expensive numerical integration or ap-
proximation methods. Moreover, such problems can often be stiff, especially for
large matrices or when high accuracy is demanded. Interval iterative methods, as
proposed in this work, provide guaranteed enclosures of the solution and enhance
the reliability and robustness of computations by controlling rounding errors and
uncertainties.
Therefore, the method developed here not only contributes to the theoretical un-
derstanding of matrix root computations but also has practical significance by
improving the numerical stability and precision of solutions to matrix-function-
based differential equations encountered in real-life applications.

Note 4. This study worked based on Wolfram Mathematica for numerical results.
The computer specifications were Intel(R) Xeon(R), CPU E7-4870 2.40 GHz (2
processors), with 16 GB of RAM.
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5. Conclusions
In this study, an inclusion interval iterative method was developed based on a
stable iterative approach for computing the pth root of a given square matrix,
inspired by the epsilon inflation technique. The proposed interval method effec-
tively calculates enclosure solutions, thereby controlling and containing rounding
errors. The method achieves second-order convergence, and importantly, does not
require an initial matrix that contains the pth root of the matrix A. Additionally,
this study demonstrated the robust performance of the midpoint interval iterative
method by utilizing the properties of the interval method. Finally, several numer-
ical examples were provided to validate the theoretical findings.
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Appendix: pAlgorithm Code

pAlgorithm: Mathematica code for calculating the pth root of a given
matrix
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diameter[X_] :=
Table[(Abs[Max[X[[i, j]]] - Min[X[[i, j]]]]),
{i, 1, Length[X]}, {j,1,Length[X]}]
midpoint[X_] :=
Table[(Max[X[[i, j]]] + Min[X[[i, j]]])/2,
{i, 1, Length[X]}, {j, 1, Length[X]}]
down[x_, n_] := N[x - 10^-n (x*10^n - Floor[x*10^n]), n];
up[x_, n_] := N[x + 10^-n (Ceiling[x*10^n] - x*10^n), n];
M = Input["M"];
u = Input["u"];
delta = Input["delta"];
p = Input[pth_Root];
tolerance1 = Input["tolerance1"];
tolerance2 = Input["tolerance2"];
L = IdentityMatrix[Length[A]];
subset[Y_, Z_] :=
Table[If[Min[Z[[i, j]]] < Min[Y[[i, j]]] &&
Max[Y[[i, j]]] < Max[Z[[i, j]]],True, False],
{i, 1, Length[Z]}, {j, 1, Length[Y]}];
subsetTrue = Table[True, {i, 1, Length[A]}, {j, 1, Length[A]}];
Subscript[X, 0] =
Table[Interval[{L[[i, j]] - u/2, L[[i, j]] + u/2}], {i, 1,
Length[A]}, {j, 1, Length[A]}];
Subscript[X, -1] =
Table[Interval[{L[[i, j]] - u, L[[i, j]] + u}], {i, 1,
Length[A]}, {j, 1, Length[A]}];
Subscript[G, 0] = SetAccuracy[A, M];
k = 0;
Subscript[epsilon, 0] = 2;
diam = SetAccuracy[Norm[diameter[Subscript[X, k]], 2], M];
normProot = Norm[MatrixPower[midpoint[Subscript[X, k]], p] - A, 2];
If[subset[Subscript[X, k], Subscript[X, k - 1]] == subsetTrue,
subseting = True, subseting = False];

While[(normProot > tolerance1) || (diam > tolerance2) ||
(subseting ==False),
Subscript[a, k + 1] =
SetAccuracy[midpoint[Subscript[X, k]] -
1/p Subscript[X, k].(IdentityMatrix[Length[A]] - Subscript[G, k]),M];
Subscript[epsilon, k + 1] =
SetAccuracy[Min[Max[Table[Max[Min[Subscript[a, k + 1][[i, j]]]
-down[Min[Subscript[a, k + 1][[i, j]]], k+delta],
up[Max[Subscript[a, k + 1][[i, j]]], k+delta]-
Max[Subscript[a, k + 1][[i, j]]]], {i, 1,
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Length[A]}, {j, 1, Length[A]}]], Subscript[epsilon, k]/2], M];
Subscript[X, k + 1] = SetAccuracy[
Subscript[a, k + 1] +
Table[Interval[{-Subscript[epsilon, k + 1], Subscript[epsilon, k + 1]}],
{i, 1, Length[A]}, {j, 1, Length[A]}], M];
Subscript[Y, k] =
SetAccuracy[((p - 1) IdentityMatrix[Length[A]] + Subscript[G, k])/p,M];
Subscript[G, k + 1] = SetAccuracy[
Inverse[MatrixPower[Subscript[Y, k], p]].Subscript[G, k], M]; k++;
normProot = Norm[MatrixPower[midpoint[Subscript[X, k]], p] - A, 2];
diam = SetAccuracy[Norm[diameter[Subscript[X, k]], 2], M];
If[subset[Subscript[X, k], Subscript[X, k - 1]] == subsetTrue,
subseting = True, subseting = False]]
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