Mathematics Interdisciplinary Research 11 (1) (2026) 93 — 111

Original Scientific Paper

Solving Distributed-Order Fractional Equations via
Genocchi Wavelets and Weighted Residual Method

Parisa Rahimkhani ", Elham Keshavarz* and Reza Moeti

Abstract

In this work, a novel method to finding the numerical solution of distributed-
order fractional differential equations (DFDEs) is introduced. This method
is based on the Genocchi wavelets (GWs), and weighted residual method
(collocations method). For this aim, an exact mathematical formula that in-
corporates regularized beta functions is meticulously formulated to ascertain
the Riemann-Liouville fractional integral operator (R-LFIO) corresponding
to these specific wavelets. By employing the aforementioned integral opera-
tor and leveraging the capabilities of Gauss-Legendre numerical integration,
the original problem is adeptly transformed into a comprehensive system
of algebraic equations, thereby facilitating a more manageable analysis and
solution process. Also, the error analysis is investigated and examples are
given to demonstrate the effectiveness and accuracy of the method.
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1. Introduction

The fractional differential equations (FDEs) have proven to be tools of great ne-
cessity in modelling complex systems within the purview of science and engineer-
ing because they manifest about nonlocal behaviour and memory dependence,
which is marked in a variety of physical, biological, and engineering phenomena
[1, 2]. Generalizing the concept of an integer-order derivative to fractional orders,
FDEs furnish more sophisticated and flexible mathematical propositions for the
description of such phenomena [3, 4]. The origin of distributed-order fractional
differential equations lies in the need to model systems where the memory and
hereditary properties are not adequately described by a single fractional order.
Instead, DFDEs generalize classical FDEs by integrating the fractional derivative
over a range of orders, weighted by a distribution function. This approach was
first systematically explored by Caputo (1969) and later developed by Bagley and
Torvik (2000), enabling the mathematical representation of processes with multi-
ple or evolving memory scales. As a result, DFDEs have found wide application in
modeling anomalous diffusion, complex viscoelastic materials, and systems with
distributed relaxation times, providing a flexible and powerful framework for cap-
turing real-world dynamics that exhibit nonlocal and multi-scale behavior [5-7].
Within this half-decade, the concept of the DFDEs has vastly broadened the abil-
ity to vary the order of differentiation from fixed points to a continuous measure
over some interval [8]. In this way, DFDEs facilitate modelling processes with
dynamic behaviour, especially in applications, such as viscoelastic [9], signal pro-
cessing [10], optimal control [11], diffusions [12], and dielectrics [13].
Analytical techniques for the examination of solutions pertaining to DFDEs have
been explored, for instance, in [14, 15]. But, despite of DFDEs theoretical at-
tractions, it is extremely complex and challenging to derive closed forms for such
equations, especially when it comes to complicated systems. That is why the new
development regarding numerical methods has become the tremendous areas of
focus in research [12, 16]. For now, existing numerical methods for solving DFDEs
include the finite difference method [16], fractional Chebyshev wavelets method
[17-19], Hahn hybrid functions method [20], Chebyshev collocation method [21],
shifted Legendre polynomials [22], Miintz-Legendre polynomials [23], Pell wavelet
optimization method [24], and orthonormal Bernoulli polynomials method [25].
Although these methods yield remarkable accuracy, they have certain limita-
tions. For example, finite difference methods usually have difficulties converging
for strongly nonlinear systems, and conventional wavelet-based techniques might
not have the flexibility needed for problems involving distributed-order deriva-
tives. The variety of DFDEs and possible applications often require an innovative
approach combining distinct mathematical properties that fractional operators
possess in wavelet theory.

Wavelet-based techniques have recently garnered a lot of focused attention,
especially those relying on GWs [26, 27]. The GWs are orthonormal, compactly
supported, and therefore might give a very good representation of very complicated
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functions [28]. The combination of wavelet theory and fractional calculus has pro-
vided a very promising tool towards improving accuracy in numerical computation
and efficiency when solving DFDEs [29].

This study focuses on presenting a new numerical approach for DFDE based
on weighted residual techniques using the GWs. It transforms the original prob-
lem into an algebraic equation system by Riemann-Liouville fractional integral
operator and Gauss-Legendre numerical integration. The method is efficient in
overcoming the current drawbacks of existing methods in terms of precision and
complexity. In addition, the GWs introduce a systematic approach framework
for making solutions lie in the structure of wavelet-based norms. Within this
framework, the GWs could be the promising option. Their high accuracy in rep-
resenting functions makes them apt for the challenge of dealing with DFDEs. The
GWs coincide perfectly with the weighted residual methods and thereby facilitate
numerical computations. Besides, by creating more manageable systems in terms
of computation, this will form further simplifications in transforming DFDEs to
algebraic systems for solution purposes.

In the present study, we examine the following DFDEs:

B
| 4§ Druv)da = F o), 1)
with the specified initial conditions
u®(0) = ul”, i=0,1,...,[8] -1, (2)

here A and F are given functions, the parameters a and 8 are defined as positive
real numbers, the operator § D{ denotes the Caputo fractional derivative of order
q, and a < ¢ < (. Existence, uniqueness, and approximate solutions for the
general nonlinear distributed-order fractional differential considered in [30].

The choice of the Genocchi polynomials as basis functions was made due to
their specific properties that suit the above problem. The Genocchi polynomials
provide a good approximation for the solution of differential equations, particularly
in the context of series expansion methods. The Genocchi polynomials G,,(x) are
defined on the interval [0, 1] via the generating function [31]:

2 L tn
L :ZG"(JC)E’ [t] < .
n=0 '

The key features of the proposed polynomials can be summarized as follows [32]:

e The coefficients of the individual terms in the Genocchi polynomials are in-
tegers, which eliminates computational errors. In contrast, many classical
polynomials, such as Legendre and Bernoulli polynomials, generally have
non-integer coefficients. This feature highlights the advantage of the Genoc-
chi polynomials over the aforementioned ones.
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e The Genocchi polynomials contain fewer terms compared to other well-
known polynomials. For instance, the Genocchi polynomial Gg(z) consists
of four terms, whereas the Bernoulli polynomial Bg(z) includes five terms.
Moreover, the shifted Chebyshev polynomial Ti(z) and the shifted Legendre
polynomial Lg(x) both contain seven terms. As a result, when used for func-
tion approximation, the Genocchi polynomials require less computational
time than Bernoulli, shifted Chebyshev, and shifted Legendre polynomials.

The study is organized in these sections: Section 2 presents a short overview
of fractional operators and the GWs. The Riemann-Liouville fractional integral
operator articulated in Section 3. Proposed numerical method with steps for
implementation has been provided in Section 4. Analysis of errors is given in
Section 5 to justify the reliability of the method. Applying this method through
illustrative examples is Section 6, while Section 7 ends with discussions on the
findings and future directions of the research.

2. Preliminaries

In this section, we introduce the essential concepts including fractional operators,
definitions, properties, and a formulation of the GWs and their properties in solving
DFDEs. This would be necessary for continuing deeper into the numerical method
and its properties in later sections.
2.1 Fractional operators
Definition 2.1. The Riemann-Liouville fractional integral operator of order ¢ > 0

is defined as [33, 34]:

Rra _ b t — 2) Yu(2)dz
OItu(t)—r(q)/o(t i lu(z)dz, >0, (3)

Definition 2.2. The Caputo fractional derivative operator of order ¢ is defined
as [34, 35]:

§Dfu(t) = ﬁ fg(t — 2)" 0 1y (") (2)dz, n—1<q<n,
where n € N, and ¢ > 0.

Proposition 2.3. The characteristics of the Caputo fractional derivative and R-
LFIO are expressed as follows [36]:

1. § DI I} u(t) = u(t),
2. §I86 Diu(t) = ut) — Y1) u(0)4,

3. § Diu(t) = {16 Diu(t),
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5€N07 /3< [q]a

otherwise,

0,
4. ochtBZ{ L(B+1) 43—q
T'(B+1—q) )

Ry — _T(B+1) B+
5 oLt = tErgt
6. D=0,

where £ is real constant, the ceiling function [q| denotes the smallest integer greater
than or equal to q, No ={0,1,2,---} andn—1< ¢ < n.

Definition 2.4. The definition of the Caputo distributed-order fractional deriva-
tive is as follows [18]:

1
€ Py () = / p()5 Du(t)dg, (4)
0

where p(q) > 0,q € (0,1), and fol p(q)dq < cc.

2.2 Genocchi wavelets and their properties

Now, we revisit the definition of the GWs on the interval [0,1) as [28]:

E—1 R N N
Y (t) = 272 G, (2871t — n), oy <t < B
o 0, otherwise,

A=n—1,n=12....21, m=12...,M, m=21M,

with

~ 1, m=1,
G (281 —n) = —t G2t —n), m>1.

2(=1)m (mh)?2
Tl);ngzm

Here, G,,,(t) is the Genocchi polynomials of order m as [28]:

%@:i(?)MJﬁ (5)

=0

where g; = 2B; — 27t B; is the Genocchi numbers and B; is the well-known
Bernoulli number. From the properties of the Genocchi polynomials, the following
relation is established [28]:

fol G ()G, (t)dt = %gmﬁh m,n > 1.
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3. Riemann-Liouville fractional integral operator

The primary aim of this section is to present the exact formula for the R-LFIO of
the GWs in terms of the regularized beta function (RBF). The RBF is defined as
[29]:
) _ T(a+B) [t a— _
I(t; o, B) = W Jo 52711 = )P s,

Lemma 3.1. Let v and c be positive real numbers. Then

Y+a N
RIS pe(t) = TS (1= 15y + 1, @) e (),

where p. is defined by [29]

w1 ={ o e ©)

otherwise.
Proof. We have p.(t) = 0, for t < c. So FI}(t"p.(t)) is identically zero on the

interval [0,c). At this point, it is reasonable to presume that ¢ > c. Using the
definition of R-LFIO (3), their properties, and Equation (6), we obtain

1 ' v q—1
w/o STpe(s)(t — )1 ds

o L tsy _sq—ls_i CS’Y —Sq_ls
= r<q>/o (t=s)d r<q>/o (E=e)td

o L7 (17 pe(t))

1 ¢ s s s
— Rrpagmy — / V(Y71 = 2y g2
P10 = g | e
R o e [f 1 -1y
= t — — -
T (v +1)I(q)_,c
= Qi) - G+l ()H(*;%Ll,q)

D(g) T(y+q+1) 't

= T iy L)

I(y+1+q) t
O
Theorem 3.2. The R-LFIO of GWs (t,q)) for ¢ > 0 is obtained as:
o L7 (T(1) = Qt,q), (7)
where
Q(t,q) =
BT (10 (0)s - G (W, (1)), 6 (V2,1 (1)), - T (2,00 (8), - G (W1 1 (1)), -

I (o= pr (8)]T
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That, for the case where m =1, we have
0<t< gk,

0,
kE—1
277 19 cr. 7 A+l
CL(Wna) =1 Tl -IF Lol o <t <gh (8
2%tq[]1(072.1 )—H(ﬂ'l )] n+1 <t<1
T(q+1) 154 15 4q)], k-1 =
Form > 1, we get:
0, 0<t< 5,
k—=1(2m)! m s m S s—1 s—j —1)4
2( 21)m((ri')3Q2m ZS:O Zj—O( s ) < j ) (_1) ng ‘;(TL) 32(k 1)j
r ita c 7 7
B (m(0) = { XTEF L -1+ L), g <t< &5
2k—1(2m)! i A\ s—
2( 1 ((7n?'n)92m Zs OZ] 0( ) ( )(_1)6 ngfs(n)s ]2(k D
T 1 j+aq 1
XF(gaJrJr«;il)[H( i+ La) -1+ 1,9, 2k1<t<(91)
where ¢; = an;ll, and c3 = 5.
Proof. For m = 1, the GWs can be rewritten as
k-t
Yna(t) =277 (pe, (1) — ey (1)) (10)
From Equation (10), Proposition 2.3, and Lemma 3.1, we yield
k=1
0L (Wna (1) = 277 [(L](he, (8) — 617 (he, (1))
k—1
272 1 Cc1 Co
[(1 - H(?v 17(]))#01 (t) - (1 - H(?v ]-7 q)):U’CQ (t)](ll)

T T(g+1)

Thus, we conclude the relation (8)
For m > 1, the GWs can be rewritten as

2k=1(9m)!
'(/)n,m(t) = \/2(_]_)7” (m!)ngm

x

2k=1(2ym)!
2(=1)™(m!)?gam

s=0j

(G (2871 —

23 (7)(

At (£) — G (25711 — )1y (1))
j)(ﬂsgm4>smw”wm (1) — 10y (0]

(12)
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Considering Equation (12), Proposition 2.3, and Lemma 3.1, we get:

2’C 1 2m , ‘ ‘
I (Ynm(t)) = \/ (—=1)%7 g (R)> =92k =1
° et 25 (4 ) (5) s
X [oRIf(tjum (t)) - qu(tjuw @)

N EE (1))

s=0 j=0
IMK — (555 + L )he, () = (1= 135 + 1,0 (1) (13)

Finally, we conclude the relation (9).

4. Explanation of the proposed method

This section looks into the methodology suggested for solving DFDEs. The ap-
proach using GWs with weighted residual methods would transform the initial
problem into a system of algebraic equations.

For solving problem (1)-(2), we expand § DPu(t) in the terms of GWs as

SDPu(t) ~ CTW(t) =§ DPu*(t). (14)

Using Proposition 2.3, and Equations (7) and (14), we have

B1-1 ;
(A .
ut) = Tt B) + Y wg) = u* (). (15)
=0
From Equation (15), we achieve

(8171 ¢ payi 0

§ Dfu(t) ~ CTQ(t, B —q)+ Y —u” =5 Diu(t). (16)
i=0 ’

Substituting Equation (16) in Equation (1), we get

B
R(t,C) = / A(q.S Diu*(t))dq — F(t). (17)

Through the application of the Gauss-Legendre numerical integration technique
for the assessment of the integral delineated in Equation (17), we derive

e S ) R ORI

R(t,C
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where {w;}7_, and {£;}7_, are weights and Legendre-Gauss quadrature nodes,
respectively, and 7 is the number of weights and nodes.

By employing the weighted residual method by weighting function §(¢t — ¢;), we
have

1
R(ti,C):/ §(t —t;)R(t;,C) =0, i=1,2,...,2 1M, (19)
0

where t; represents the roots of the shifted Legendre polynomials Py. The above
relation gives 2¥~1 M equations corresponding to 2*~' M unknowns, which can be
resolved for the unknown vector C through the application of Newton’s iterative
method.

5. Error analysis

In this section, we intend to discuss the convergence characteristics for the ap-
plication of the proposed numerical methods in solving the problem of fractional
differential equations with distributed order. Some theoretical foundations will
assist in defining accuracy for our approach. Attention to the best approximation
in Sobolev norms within the context of GWs will lead to the extraction of signifi-
cant results that describe the reliability and effectiveness of the method obtained
through definitions and theorems.

Definition 5.1. The Sobolev norm of integer order 7 > 0 within the interval
(a, B) is formally delineated by [37]

2 2

T8 U
[l a,8) = Z/ WD dt ] = | DI @) | (20)
j=0"¢ =0

where u() signifies the distributional derivative of the function u of the j-th order.

Theorem 5.2. Let us consider the scenario where u is an element of the func-
tion space H™ («, 8), with the condition that T > 0, and let u* represent the best
approximation of u within the set U(t); thus, [38]

lu = w208 < M7 T 07| 200, (21)
and for s > 1
* s—1—1 —1\s—7 T
lu = w305 0y < M7 27T (25 T [l 2, ). (22)

Theorem 5.3. Let us consider the case where u € H™ («, ), with the condition
that 7> 0, M > s, and 0 < q < 1. Then

(ﬁl—q _ al—q)CM2s—§—r(2k—l)s—-r ||u(7')||
I'(2—-q) s

(23)

1§ Dfu —§ D 12(a,5) <

where 1 < s < 7.
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Proof. The proof involves using the application of the characteristics of fractional
derivatives in conjunction with the convolution inequality.
By employing case 3 of Proposition 2.3 and Ref. [39], we have

IF# Gllp < IFl11IG]]-

So the following conclusion is reached:

2
C g C q. %2 _ Ryl—q/C C *
o Diu—¢ Div||f2(0 = HOIt (o Dru =g D) L2(a,B)

1 2

m * (OCDtu 751 Dtu*)

L2 (e,8)
2

Bl_q — al_q C C *
(=) J6om =6 0o

Blfq 7041711 2 o2
( F<2_q> > HU*U H?—ls(a,,@) :

2
L?(a,B)

From the implications of Theorem 5.2, the following result is derived:

(Blfq _ alfq)262M4571727'(2k71)25727 (12
T2-q)? ™z o

c c
15 Dfw —§ Diu*||72(0,5) <

By extracting the square root, the required result is obtained. O

At this juncture, we will conduct a thorough examination of the error bounds
associated with the proposed methodology.

Theorem 5.4. Let uw € H™ (o, ) with T > 0, M > s, and the operator A defined
in (14) being Lipschitz continuous with the Lipschitz constant . Then, the present
error estimate of the method E is given as follows:

(5 _ a)(ﬂlfq _ alfq)cM257%7'r(2k71)sf-r

(1) 24
F(2—q) ||u ||L2(o¢,,6’)7 ( )

1B 22 (a8) <1

where 1 < s < 7.

Proof. We define

B
1Bl = / A(q.S Diu(t))dg — F(t)

L2 (e, 8)

From Equation (1), we have

B B
/ A(¢.S Du(t))dg — / A(¢. D (t))dg

[e3

£ L2(a,8) = |
L2(c,B)
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Given that A adheres to a Lipschitz condition characterized by the constant n, we
derive

B
IEllz2(a8) < n/ I§ Dfult) = Dfw* (t)llz2(a,p) dt.
@
From Theorem 5.3, we get

(8 —a)(B~9 — a'~9) M55 7 (2k— )57
I'(2-q)

This concludes the proof. O

IEllz2(a,8) < 122 o)

6. Numerical examples

Here, four numerical examples are provided to show the validity and applicability
of the presented scheme in Section 4.

Example 6.1. Consider the following DFDEs:

2 5 3
I'6-q)c -t
VDU (t)dg = —— 25
/0 120 ° tult)dq Lnt ’ (25)

with the initial conditions
u(0) = u’(0) = 0. (26)

The exact solution is u(t) = .

We compare the obtained results of our method with the methods in [15](for
step length in Adams solver of 0.0015625 and different values of step length in
trapezium rule (e)), and [40], which shows the superiority and accuracy of the
proposed method in Table 1. This clearly indicates the efficiency of the proposed
method in reducing absolute errors. In addition, it indicates that the method can
give extremely accurate solutions with fewer required levels set in the number of
nodes. Also, the absolute errors, numerical and exact solution for k = 2, M = 8
are demonstrated in Figure 1. This demonstrates the method’s strong capability
in capturing the underlying dynamics of the represented DFDE, highlighting its
robustness and reliability for potential real-world applications.

Example 6.2. Consider the following DFDEs:
1.5 c 1.8 _ 405
I'(3—q)y Diu(t)dg = 2———— 27
| TG - Dtuas = 2. (27)

with the initial conditions
u(0) = u’(0) = 0. (28)

The exact solution is u(t) = t2.
In Table 2, the absolute errors obtained by the mentioned method for £ = 2 and
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Table 1: The comparison of absolute error in u(0.5) for Example 6.1.

Ref.[15] Absolute errors CPU

e=1 248 x 1073 -

e=0.5 6.39 x 104 -

e=0.25 1.59 x 1074 —

e=0.75 3.73 x 1075 -

Ref.[40]

K=2 248 x 1073 —

K=4 6.36 x 1074 -

K=8 1.47 x 10~* -

K =16 1.71 x 10> -

Proposed method

k=2,M=5 1.47 x 10~10 0.047
=2,M =38 9.23 x 10716 0.219

1.4x1014 =

®  Numerical

12x107 14

=14 [
1.0x10 Exact
8.0x10"15|

6.0x10715

Absolute error

x10715 |

0
.0x10715

-
Oleeo o oo ooo oo ; .
0.0 0.2 0.4 0.6 0.8 1.0

(b)

Figure 1: (a): absolute error, (b): numerical and exact solution of the presented
method for k = 2, M = 8 for Example 6.1.

different values M are reported. As the value of M increases, errors significantly
decrease, confirming that the solution converges towards the exact value. It also
demonstrates the computational efficiency of the method, achieving accurate re-
sults with relatively low computational cost. In addition, Figure 2 shows the abso-
lute error, numerical and exact solution of the presented method for &k = 2, M = 5.

Example 6.3. Consider the following DFDEs:

2 c , 6 _ 42
| =g Diute) g = 155 (29)

with the initial conditions
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Table 2: The absolute error for kK = 2 and different values M for Example 6.2.

t M=2 M=3 M=4 M=5

0.1 1.26x1073 807x10% 7.45x10~° 882x10°°
0.2 4.61x107* 3.15x107* 1.41x10~* 5.03x10°°
0.3 1.79%x1073 470x107* 9.04x107°> 148 x107*
04 135x107% 1.19x 1073 7.05x10™* 5.25x10°*
0.5 365x1073 131x1073% 1.39x10% 1.23x10°3
09 580x1073 250x1073 218 x1073 2.42x 1073

0.0025

0.0020

T T T - r T v ;
: / : ®  Numerical
: / Exact

-

0.0015

[
|

Absolute error

0.0010

0.0005 /\ I

0.0000 ’\/\/ V
0 02 0.4 o

0.

L H L
] 0.8 10

(@)

Figure 2: (a): absolute error, (b): numerical and exact solution of the presented
method for k = 2, M =5 for Example 6.2.

The exact solution is u(t) = t3.

In Table 3, we compare the results obtained using our method with those presented
in Ref. [15](for a step length of 0.0015625 in the Adams solver and various step
lengths € in the trapezium rule). Furthermore, Figure 3 illustrates the absolute
error, numerical and exact solution obtained using the proposed method for £ = 1
and M =5.

Example 6.4. Consider the following DFDEs:

t3 (t2 _ eft)

31
14 Lnt ’ (31)

2
/ ¢~IT(6 — q)S Dfu(t)dg = 120
0
with the initial conditions

u(0) = u/(0) = 0. (32)

The exact solution is u(t) = 5.
Figure 4 shows the absolute error and the numerical solution obtained using the
proposed method for k = M = 1.
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Table 3: The comparison of absolute error in u(0.5) for Example 6.3.

Ref.[15] Absolute errors CPU
e=1 2.58 x 1072 —
e=05 8.95 x 1073 -
e=0.25 2.49 x 1073 —
e=0.125 6.37 x 1074 -
Proposed method

k=1,M =2 2.84 x 1077 0.015
k=1,M =3 3.93 x 10711 0.047
k=1M=4 1.63 x 10~ 0.062
k=1,M=5 8.87 x 10714 0.062

15%107 13

1.0x107"13

Absolute error

501074

1.0

®  Numerical

Figure 3: (a): absolute error, (b): numerical and exact solution of the presented
method for £k =1, M = 5 for Example 6.3.

0025
0.020f
0.015F

0,010

Absolute error

0.005

0.000

Numerical solution

(a)

i
00 01

I i i L
02 03 04 05

(o)

Figure 4: (a): absolute error, (b): numerical solution of the presented method for

k=M =1 for Example 6.4.
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7. Conclusions

This paper presents a method based on the GWs for solving DFDEs. By deriv-
ing the exact formula for the Riemann-Liouville fractional integral operator of the
GWs using the regularized beta function, the study introduces an effective numer-
ical approach. The integration of GWs with Gauss-Legendre numerical techniques
transforms the DFDEs into algebraic equations, facilitating precise and efficient
computation. The numerical experiments conducted validate the method’s accu-
racy and computational efficiency, outperforming existing techniques. The results
demonstrate that this approach not only resolves the challenges associated with
solving DFDEs but also offers a structured framework for extending wavelet-based
solutions to more complex systems. We envisage the following directions for fu-
ture research:

e The proposed method can be extended to solve various types of problems, in-
cluding fractional partial differential equations, fractional pantograph equa-
tions, and others.

e Conducting a stability analysis of the proposed scheme for the numerical
approximation of the current problem is engaging direction for future inves-
tigation.
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