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Classification of Bounded Travelling Wave

Solutions of the General Burgers-Boussinesq

Equation
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Abstract

By using bifurcation theory of planar dynamical systems, we classify all
bounded travelling wave solutions of the general Burgers-Boussinesq equa-
tion, and we give their corresponding phase portraits. In different parametric
regions, different types of travelling wave solutions such as solitary wave so-
lutions, cusp solitary wave solutions, kink (anti kink) wave solutions and
periodic wave solutions are simulated. Also in each parameter bifurcation
sets, we obtain the exact explicit parametric representation of all travelling
wave solutions.
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1. Introduction
Nonlinear partial differential equations (NPDEs) have a wide array of applica-
tions in many fields. For example it can describe the motion of the isolated waves
localized in a small part of space. Also it can be applied in physics and engineer-
ing for expressing the behavior of magneto fluid dynamics, water surface gravity
waves, electromagnetic radiation reactions, and ion acoustic waves. Finding ex-
plicit exact solution of NPDEs plays an important role in the study of nonlinear
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physical phenomena. In recent years, numerous powerful and direct methods for
finding the explicit solutions of NPDE have been developed, such as Hirota bilinear
method [7], Backlund transformation method [14], Painleve expansion method [17],
Sine-Cosine method [18], homotopy perturbation method [6], homogenous balance
method [16], algebraic method [8], Jacobi elliptic function expansion method [12],
F-expansion method [2,3, 13], and so on. It should be mentioned that bifurcation
theory of planar dynamical systems is an efficient method as well [4, 9, 11, 19, 20].
In this paper, we consider the following general Burgers-Boussinesq equations

ut = (α/2)vxxx − (β/2)uxx + 2(uv)x, (1)
vt = (β/2)vxx + 2vvx + (1/2)ux,

where α and β are real parameters and system (1) describe water waves. Finding
it’s travelling wave solutions is very helpful for mechanical and civil engineers
to apply the nonlinear water model in harbor and coastal design. In [10] by
using the extended homogenous balance method the exact travelling waves and
the soliton wave solutions of Burges-Boussinesq equations were obtained. Also
in [15] by the Jacobi elliptic function method, the periodic wave solutions for
Burges-Boussinesq equations were obtained. We will find exact solutions of (1)
using the bifurcation theory of planar dynamical systems. The purpose of this
paper is to give the bifurcation sets of the bounded travelling wave solutions, i.e.
solitary wave solutions, kink (anti kink) wave solutions and periodic wave solutions.
Also we obtain the explicit representation for some of these solutions in different
parametric region determined by the bifurcation set. To find the travelling wave
solutions of (1) we consider the travelling wave solution of the form:

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = x− ct, (2)

where c is an arbitrary constant and denotes the wave speed. By substituting for
u and v from (2) into the equations (1) we get the following ordinary differential
equations:

−cuξ − (α/2)vξξξ + (β/2)uξξ − 2(uv)ξ = 0, (3)
−cvξ − (β/2)vξξ − 2vvξ − (1/2)uξ = 0 .

By integration of (3) once with respect to ξ we obtain

−cu− (α/2)vξξ + (β/2)uξ − 2(uv) = −g1, (4)

−cv − (β/2)vξ − v2 − (1/2)u = −g2,

where g1 and g2 are real integral constants. From the second equation of (4), we
get

u = 2g2 − 2cv − βvξ − 2v2, (5)
uξ = −2cvξ − βvξξ − 4vvξ.
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Now we substitute u and uξ from (5) into the first equation of (4) to obtain(
α+ β2

)
vξξ/2− 4v3 − 6cv2 + 2(2g2 − c2)v + (2cg2 − g1) = 0. (6)

If α+ β2 = 0, system (6) is reduced to algebraic equation

−4v3 − 6cv2 + 2(2g2 − c2)v + (2cg2 − g1) = 0. (7)

In this case we have constant travelling waves which correspond to zeros of (7)
where the number of its zeros will change from one to three by changing the
parameters. To consider the nontrivial case we assume that α + β2 6= 0. Now let
dv/dξ = x2. Then we drive the following travelling wave system which is a planar
Hamiltonian system:

dv

dξ
= x2, (8)

dx2
dξ

=
2

α+ β2

(
4v3 + 6cv2 − 2(2g2 − c2)v − 2cg2 + g1

)
.

The phase portraits of the Hamiltonian system (8) determine all travelling wave
solutions of (1), so we want to find the bifurcation set for which the qualitative be-
havior of phase portraits of (8) changes. Here we consider only bounded travelling
waves, because in physical models only bounded travelling waves are meaningful.

Suppose that v(x, t) = v(x− ct) = v(ξ) is a continuous solution of system (8)
for −∞ < ξ <∞ and limξ→+∞ v(ξ) = p, limξ→−∞ v(ξ) = q. We recall that
(i) if p = q then v(x, t) is called a solitary or impulse wave solution, and
(ii) if p 6= q then v(x, t) is called kink (anti kink) wave solution.
Usually a solitary wave solution, a kink (anti kink) wave and periodically travelling
wave solution of equations (1) corresponds to a homoclinic orbits or cuspidal loop,
heteroclinic orbit and periodic orbit of (8) respectively. Thus we need to find all
periodic, homoclinic orbits, cuspidal loop and heteroclinic orbits of system (8)
which depend on the system’s parameters.

The rest of this paper is organized as follows. In section 2, we give the bifur-
cation set and corresponding phase portrait of system (8). In Section 3, using the
information obtained about the phase portraits of bounded solution of (8) we ob-
tain the numerical simulation for corresponding bounded travelling wave solutions
of the system (1). In Section 4, we give exact explicit parametric representation
for different possible solitary wave solution, periodic travelling wave solution and
kink (anti kink) wave solution of equation (1).

2. Bifurcation Diagram of System (8)
In this section, we consider bifurcation set and phase portraits of (8). To simplify
our analysis, we make the following change of coordinates which remove second
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order term in (8). Let x1 = v + c/2, then (8) becomes

dx1
dξ

= x2,

dx2
dξ

= f(λ, µ, x1), (9)

where f(λ, µ, x1) = 8
α+β2 (λ + µx1 + x31), λ = g1/4 and µ = −g2 − c2/4. System

(9) is Hamiltonian system with Hamiltonian H(λ, µ, x1, x2) = x22/2 + F (λ, µ, x1),
where

F (λ, µ, x1) =
−8

α+ β2
(λx1 + µx21/2 + x41/4), (10)

is the potential function of the Hamiltonian system (9). Critical points of F are
zeros of f . It is known that isolated minimum, maximum and inflection points
of F correspond to center, saddle point and cusp point of system (9) respectively
(e.g. see [5]). Also it is known that the global structure of phase portraits of
system (9) will not change qualitatively unless one of the conditions listed below
is violated [5]:

i) There are only finitely many critical points of F .

ii) Each critical point of F is non-degenerate, that is F ′′(x̄1) 6= 0 for all critical
points x̄1.

iii) No two maximum values of F are equal.

iv) |F (x1)| → ∞ as |x1| → ∞, that is F is unbounded for both x1 → ∞ and
x1 → −∞.

A potential function that satisfies the above four conditions is called a generic
potential function. In our case it is clear that the conditions (i) and (iv) are
satisfied for all values of λ and µ. Therefore to find the bifurcation set, we first
need to find conditions where critical points of F becomes degenerate. So we set

f(λ, µ, x1) = λ+ µx1 + x31 = 0,

fx1(λ, µ, x1) = µ+ 3x21 = 0. (11)

From (11) and finding µ and λ in terms of x1 and then cancelling x1 among them
one can find the bifurcation curve

Γ :=
{

(λ, µ) : λ2 = −(4/27)µ3
}

=
{

(g1, g2, c) : g21 = (c2 + 4g2)3/27
}
,

where Γ is a cusp in λ-µ parameter plane which divides the plane into five distinct
regions (see Figures 1 and 2). In each parametric region, number and type of
critical points remains unchanged. To see the type and number of critical points it
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is sufficient to consider a typical equation for a particular value of µ and λ in that
region. It is easy to verify that number of critical points of F will change from one
non-degenerate critical point to three non-degenerate critical points as parameters
move from region (I) (outside of the cusp) into region (III) (inside the cusp). For
parameter values on the cusp, the potential function has two critical points, one
of them is a non-degenerate critical point and the other is degenerate, also for
µ = λ = 0 where two branch of the cusp intersect, there is only one degenerate
critical point. To classify non-degenerate critical points and determine the phase
portraits of system (9) we need to consider two cases (α+β2 > 0) and (α+β2 < 0)
separately.

Case I: α+ β2 > 0.
Since F is a polynomial of order four and the coefficient of x41 is negative, it is

easy to verify that the only non-degenerate critical points of F in region I (outside
of the cusp) is a maximum point. Inside the cusp (region (III)) the potential
function always has two non-degenerate maximum points and a non-degenerate
minimum point between them, but the flow of system (9) is not equivalent for all
parameter values . Indeed there are parameter values at which the two maxima
of potential functions have the same maximum values for which the condition (ii)
above for generic potential function is violated. The value of potential function
at these two maximum points are equal only if λ = 0, µ < 0 (g1 = 0, c2 +
4g2 > 0) where the system (9) has a heteroclinic cycle. For λ6=0 inside the cusp
(region III(a, c)) the system (9) has a homoclinic orbit surrounding the center.
As parameter values cross the negative µ axis (region III(b)), the homoclinic orbit
turn into two heteroclinic orbits and then back to a homoclinic orbit again. In
region V where λ = µ = 0 we have a degenerate maximum point. Typical graph of
potential function and the corresponding phase portraits of system (9) are given
in Figure 1 for different parametric regions. Therefore we have proved:

Theorem 2.1. Consider system (9) and assume that α+ β2 > 0, then we have

(1) If λ2 > −4µ3/27,
(
g21 > (c2 + 4g2)3/27

)
(region I), the potential function

(10) has only one maximum point and corresponding system (9) has a saddle
point and all trajectories are unbounded (see Figure 1(I)).

(2) If λ2 = −4µ3/27, λ 6= 0,
(
g21 = (c2 + 4g2)3/27, g1 6= 0

)
(regions II and IV),

the potential function (10) has an inflection point and a maximum point
and the corresponding system (9) has a saddle and a cusp point. Again all
trajectories are unbounded (see Figure 1 (II, IV)).

(3) If λ2 < −4µ3/27, λ 6=0,
(
g21 < (c2 + 4g2)3/27, g1 6= 0

)
(regions III(a) and

III(b)), the potential functions (10) has a minimum and two maximum
points, which correspond to a center and two saddle points of (9) respec-
tively and the values of potential function (10) at maximum points are not
equal. The corresponding system (9) has a homoclinic orbit which is filled
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V I

II IV
Bifurcation Sets

III(a) III(b) III(c)

Figure 1: Bifurcation set and the typical phase portraits of equation (9) with
α+ β2 > 0 corresponding to different parametric regions I-V .
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with oval of periodic orbit. The rest of trajectories are unbounded (see Figure
1 (III(a), III(b))).

(4) If λ2 < −4µ3/27, λ = 0,
(
g21 < (c2 + 4g2)3/27, g1 = 0

)
(region III(c)),then

the potential function (10) again has a minimum and two maximum points
which correspond to a center and two saddle points of (9) respectively, but
the values of potential function at maximum points are equal. The corre-
sponding system (9) has a pair of heteroclinic orbits which is filled with
oval of periodic orbits. The rest of trajectories are unbounded (see Figure 1
(III(c))).

(5) If λ = µ = 0, (g1 = c2 + 4g2 = 0) (region V), then the potential function
(10) has a degenerate maximum point, and the corresponding system (9) has
a saddle point and all the trajectories are unbounded (see Figure 1 (V)).

Case II: (α+ β2 < 0).
In this case trajectories of the system (9) are bounded, since the potential

function F in the equation (10) is a polynomial of order four and the coefficient
of x41 is positive. It is easy to see that the only non-degenerate critical point of
F in region I (outside of the cusp) is a minimum point and the corresponding
system (9) has a global center (a band of periodic orbits filling the whole phase
plane). Along the cusp (region II) the potential function (10) has a minimum
and an inflection point which correspond to center and a cusp of system (9). The
global phase portrait of (9) consists of a cuspidal loop and two band of periodic
orbits, one inside and the other outside of the cuspidal loop. Inside the cusp
(region III) the potential function (10) always has two non-degenerate minimum
points and a non-degenerate maximum point between them which correspond to
two centers and a saddle point for (9). The global phase portrait of the system
(9) consists of two pairs of orbits homoclinic to the saddle point, two bands of
periodic orbits inside each homoclinic orbits and a band of periodic orbits outside
the double homoclinic orbit. In region V (λ = µ = 0) the potential function (10)
has a degenerate minimum point which correspond to global center of the system
(10). Bifurcation set and graph of typical potential function and the corresponding
phase portrait of the system (9) for different parametric regions are given in Figure
2.

Therefore we have proved:

Theorem 2.2. Consider the system (9) and assume that α+β2 < 0. In this case
all trajectories of (10) are bounded. Further we have:

(1) If λ2 > −4µ3/27,
(
g21 > (c2 + 4g2)3/27

)
(region I), the potential function

(10) has only one minimum point and the corresponding system (9) has a
global center and all trajectories are periodic (see Figure 2 (I)).

(2) If λ2 = −4µ3/27, λ 6=0
(
g21 = (c2 + 4g2)3/27, g1 6= 0

)
(region II and IV), the

potential function (10) has an inflection point and a minimum point and



270 R. Kazemi and M. Mosaddeghi

V I

II
IV

Bifurcation Sets

III(a) III(c)III(b)

Figure 2: Bifurcation set and the typical phase portraits of equation (9) with
α+ β2 < 0 corresponding to different parametric regions I-V .
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the corresponding system (9) has a center and a cusp point. Global phase
portrait of (10) consists of a center, cuspidal loop and two bands of periodic
orbits one inside the cuspidal loop and the others outside of the cuspidal
loop (see Figure 2 (II, IV)).

(3) If λ2 < −4µ3/27, λ 6=0
(
g21 < (c2 + 4g2)3/27, g1 6= 0

)
(region III(a,b,c)), the

potential function has a maximum and two minimum points, which corre-
spond to a saddle point and two centers of the system (10). Global phase
portrait of (9) consists of a double homoclinic orbit to the saddle point and
two bands of periodic orbits each encircling the centers inside the double
homoclinic loop and a band of periodic orbits outside the double homoclinic
loop (see Figure 2 (III(a, b, c)).

(4) If λ = µ = 0, (g1 = c2 + 4g2 = 0) (region V), the potential function has a
degenerate minimum point, and the corresponding system (10) has a global
center and all trajectories are periodic (see Figure 2 (V)).

3. The Numerical Simulation of Bounded Travelling
Waves

It is well known that the bounded travelling waves v(ξ) of the system (1) corre-
spond to the bounded integral curves of the equation (6) which in turn correspond
to the bounded orbits of the system (9). In Lemma 1 and Lemma 2, we have
classified all bounded integral curves of the system (9). In this section we give nu-
merical simulation for a typical member of bounded travelling waves of the system
(1) in form of v(x, t) = v(x− ct) = v(ξ) as follows:

Case I: Homoclinic orbits. These orbits only exist in regions III(a, c) when α+
β2 > 0 and in regions III(a, b, c) when α+β2 < 0. Homoclinic orbits of the system
(9) correspond to solitary travelling waves of (1). Let g1 = 1.2, g2 = 0, c = 2, α =
β = 1 which correspond to a point in region III(c) in Figure 1. Now we consider
the system (8) and choose initial conditions v(0) = −0.9130466760, v′(0) = 0 so
that they lie on the homoclinic orbit. In physics this type of travelling waves are
called solitary wave with valley form (see Figure 3(a)). Now let g1 = −1.2, g2 =
0, c = 2, α = β = 1 which correspond to a point in parametric region (III(c))
in Figure 1. Again we use initial conditions to be on the homoclinic orbit of the
system (8). Let v(0) = −1.086953458, v′(0) = 0 . This type of travelling wave in
physics are called solitary wave with peak form (see Figure 3(b)).

Case II: Cuspidal loops. These orbits only exist in regions (II) and (IV ) when
α+β2 > 0. Cuspidal loop of the system (8) again correspond to solitary travelling
wave of the system (1). As in previous part we choose two set of parameters
g1 = ±1.5396, g2 = 0, c = 2, β = 0 and α = −2 on different branches of
the cusp in parametric regions II and IV in Figure 2. Positive g1 (region IV )
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correspond to solitary wave with valley form and negative g1 (region II) correspond
to solitary wave with peak form. Now we consider the system (8) and choose initial
conditions to be on their cuspidal loops. For the first case (g1 > 0) let v(0) =
2.732050, v′(0) = 0 and for the second case (g1 < 0) let v(0) = −0.732050, v′(0) =
0 (see Figure 4(a,b)). We notice the difference between solitary waves in Figures
3 and 4 which show their asymptotic behavior as t → ±∞. In Figure 3 stable
and unstable manifolds of equilibrium point intersect transversally but in Figure
4 they intersect tangentially.
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Figure 3: Simulation of solitary waves corresponding to the homoclinic orbits of
the equation (8). (a) Solitary wave of peak form, (b) Solitary wave of valley type.
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Figure 4: Simulation of the cusped solitary waves corresponding to cuspidal loops
of the equation(8). (a) Solitary wave of peak form, (b) Solitary wave of valley
type.
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Figure 5: Simulation of the kink and anti-kink waves corresponding to the hete-
roclinic orbits of the equation(8). (a) Anti-kink waves, (b) kink waves
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Figure 6: Simulation of periodic waves corresponding to periodic orbits inside
heteroclinc cycle of the equation(8). (a) medium period, (b) long period , (c)
Short period.

Case III: Heteroclinic orbits. These orbits exist only in region (III(b)) when
α + β2 > 0. Upper and lower heteroclinic orbits of the system (8) correspond to
kink and anti-kink travelling waves of system (1) respectively. Again we consider
the system (8) and choose g1 = g2 = 0, c = 2, α = β = 1 which correspond to
a point in parametric region III(b) in Figure 1. As we have mentioned above in
this case we have heteroclinic orbits connected to saddle points (0, 0) and (−2, 0).
Now we use the initial conditions v(0) = −1.541196100, v′(0) = 1 and v(0) =
−1.541196100, v′(0) = −1 on upper and lower heteroclinic orbits respectively and
we get Figure 4(a,b).

Case IV: Periodic orbits. These periodic orbits are global centers (regions
I and V when α + β2 < 0) or local centers which lie inside homoclinic orbits
(regions III(a, b, c) when α + β2 < 0 and regions III(a, c) when α + β2 > 0),
inside and outside of cuspidal loops (regions II and IV when α + β2 < 0) and
inside heteroclinic cycles (region III(b) when α + β2 > 0). Periodic orbits of the
system (1) correspond to periodic travelling waves of the system (1). Here we
choose a periodic orbit inside the heteroclinc orbits in region III(b) in Figure 1.
Of course we could choose a global center or a periodic orbit inside homoclinic
orbits, periodic orbit inside and outside of cupidal loops as well, but the figures
are qualitatively the same. Let g1 = g2 = 0, c = 2, α = β = 1. Heteroclinc
orbit corresponding to these set of parameters passes through saddle points (0, 0)
and (−2, 0) and include the center (−1, 0) of the system(8). We choose three
sets of initial conditions v(0) = −0.99999, v′(0) = 0, v(0) = −3 × 10−11, v′(0) =
0 and v(0) = −0.0009, v′(0) = 0, close to center (−1, 0), somewhere in middle
of heteroclinic cycle and very close to heteroclinc orbit respectively (see Figure
5(a,b,c)). We notice that period of these periodic orbits increases as we move
away from the center toward the heteroclinic orbits.
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4. Explicit Formulas for Bounded Integral Curves of (9)

In this section we give explicit formulas for some bounded closed integral curves
of the system (9). Let us assume that (a, 0), (b, 0) and (c, 0) are equilibrium points
of the system (9), so that a < b < c. We describe each of these curves according
to classification given in previous section.

Case I: Homoclinic orbits:
First we consider Homoclinic orbit in region III(a) of Figure 1 (α + β2 > 0). In
this case (a, 0), (c, 0) are saddle points while (b, 0) is a center and the integral curve
is homoclinic to (a, 0). Therefore it is given by H(x1, x2) = H(a, 0). Now we set

G(x1, x2) = H(x1, x2)−H(a, 0)

= x22/2− 2[x41 − a4 + 2µ(x21 − a2) + 4λ(x1 − a)]/(α+ β2).

But (a, 0) is a multiple root of G(x1, 0), since by definition it is clear that G(a, 0) =
0 and moreover (a, 0) is a critical point of (9). Therefore

G(x1, 0) = −2(x1 − a)2(x1 − a−)(x1 − a+)/(α+ β2), (12)

where a+ and a− are roots of quadratic polynomial x21 + 2ax1 + 2µ+ 3a2 and are
given by

a± = −a±
√
−2(µ+ a2) = −a±

√
2λa.

Therefore along this homoclinic orbit we have

x2 = 2
√

(x1 − a)2(a+ − x1)(a− − x1)/(α+ β2),

where a+ > a− > x1 > a. Now by using the equation (9) we have√
α+ β2

2

∫ 0

ζ

dσ =

∫ a−

x1

dv√
(v − a)2(a+ − v)(a− − v)

, (13)

after integrating above integral we find that

x1(ζ) = a+
2(a+ − a)(a− − a)

a− + a+ − 2a+ (a+ − a−) cosh(θ1ζ)
,

where θ1 =
√

(α+ β2)(a− − a)(a+ − a)/2. Therefore, the equation (1) has soli-
tary wave solution with peak form. If the integral curve is homoclinic to (c, 0),
corresponding to region III(c) in Figure 1 just we need to interchange role of c and
a in above. Therefore, the equation (1) has a solitary wave solution with valley
form.

Now we consider Homoclinic orbits in region III of Figure 2 (α+ β2 < 0). In
this case the critical points of (9) are as follows: (b, 0) is a saddle point while (a, 0)
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and (c, 0) are centers and the integral curves are homoclinic to (b, 0). Similar to
above, along these homoclinic orbits we have

x2 = 2
√
−(x1 − b)2(a+ − x1)(x1 − a−)/(α+ β2),

where b± = −b±
√
−2(µ+ b2) and b− < x1 < b+. Therefore by using the equation

(9) along the right branch of the double homoclinic orbit we get√
−(α+ β2)

2

∫ 0

ξ

dσ =

∫ b+

x1

dv√
(v − b)2(b+ − v)(v − b−)

.

After integration and some simplification we get

x1(ξ) = b+
2(b+ − b)(b− − b)

2b− b+ − b− + (b+ − b−) cosh(θ2ξ)
,

where θ2 =
√

(α+ β2)(b− b−)(b+ − b)/2 . Therefore, the equation (1) has a
solitary wave solution with peak and valley form.
Similarly for the left branch of the homoclinic orbit in region III of Figure 2 we
get

x1(ξ) = b+
2(b+ − b)(b− − b)

b+ − b− − 2b+ (b+ − b−) cosh(θ2ξ)
,

which correspond to the solitary wave solution with peak and valley form of the
equation (1).

Case II: Cuspidal loop
Cuspidal loops exist only when α+ β2 < 0. We consider Cuspidal loop in regions
II or IV of Figure 2. In this case equilibrium points are (a, 0) and (b, 0) so that
(a, 0) is a cusp and (b, 0) is a center. Therefore there are two cases:

1. a > 0 and a > b, where b = −2a = −
√
−µ/3 which correspond to region IV

in Figure 2.

2. a < 0 and a < b, where b = −2a =
√
−µ/3 which correspond to region II

in Figure 2.

Homoclinic cuspidal loop through (a, 0) also passes through the point (−3a, 0) on
x-axis. Therefore

G(x1, x2) = H(x1, x2)−H(a, 0) = x22/2− 2(x1 − a)3(x1 + 3a)/(α+ β2),

thus G(x1, 0) = −2(x1 − a)3(x1 + 3a)/(α+ β2). Along the cuspidal loop we have

x2 = ±2
√

(a− x1)3(x1 + 3a)/(α+ β2).
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Now by using the equation (9) we have√
−(α+ β2)

2

∫ ζ

0

dσ =

∫ x1

−3a

dx

(a− x)
√

2(a− x)(x+ 3a)
,

where for cuspidal loop in region II, we have a < 0 and a < x1 < −3a and for
cuspidal loop in region IV we have a > 0 and −3a < x1 < a. Therefore we get

x1(ζ) =
a(3 + 2a2(α+ β2)ζ2)

2a2(α+ β2)ζ2 − 1
.

Case III: Heteroclinic orbit
Heteroclinic orbit exists only in region III(b) of Figure 1 for α+ β2 > 0. Similar
to homoclinic case, (a, 0) and (c, 0) are saddle points while (b, 0) is a center, but
in this case there is an additional symmetry so that −a = c =

√
−µ. Therefore

the equation (12) becomes

G(x1, 0) = −2(x21 − a2)2/(α+ β2),

where a < x1 < c and the equation(13) becomes

2√
α+ β2

∫ ζ

0

dσ = ±
∫ x1

0

dx

x2 + µ
.

Therefore
x1(ζ) = ±a tanh

(
2aζ/

√
α+ β2

)
,

in which positive sign corresponds to upper branch and negative sign corresponds
to lower branch of heteroclinic cycle which in turn correspond to anti-kink and
kink travelling wave of the system (1).

Case IV: Periodic orbits
Periodic orbits exist when either α + β2 is positive or is negative. Here we only
consider periodic orbits of (9) which are located in different regions of Figure 2
(α+ β2 < 0). Suppose that the periodic orbits passes through (a, 0) and (b, 0) so
that a < b. Therefore this periodic orbit lies on level curveH(x1, x2) = H(b, 0) = h
where H is given by (10). As before define G(x1, 0) = H(x1, 0) −H(b, 0). Then,
G(x1, 0) is a polynomial of order four with respect to x1, where a and b are their
roots. There will be two distinct cases; G(x1, 0) has either two or four real roots
(counting the multiplicity).

Two real roots: We consider a periodic orbit in either of regions I, II, IV or V
of Figure 2. In these cases

G(x1, 0) = −2(a− x1)(x1 − b)((x− δ)2 + γ2)/(α+ β2).

Therefore along the periodic orbit we have

x2 = ±
√
−2(a− x1)(x1 − b)((x− δ)2 + γ2)/(α+ β2),
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where

δ = −(a+ b)/2, γ2 = −2µ+ 3δ2 − ab, 2λ/δ = 2µ+ a2 + b2.

Now by using (9) and integral tables for elliptic integrals (see [1]) we have√
−(α+ β2)

2

∫ ζ

0

dσ =

∫ x1

b

dx√
(a− x)(x− b)((x− δ)2 + γ2)

= gcn−1(cosφ, k),

where cn−1 is the inverse Jacobian elliptic function with the modulus k (see [1])
and

A2 = (a− δ)2 + γ2, B2 = (b− δ)2 + γ2, g = 1/
√
AB,

k2 =
(a− b)2 − (A−B)2

4AB
, φ = cos−1

(
(a− x1)B − (x1 − b)A
(a− x1)B + (x1 − b)A

)
.

Therefore we have

x1(ζ) =
(aA+ δB)− (aB − δA)cn(Ωζ, k)

(A+B) + (AB)cn(Ωζ, k)
,

where cn is the Jacobian elliptic function with modulus k (see [1]) and Ω =√
−(α+ β2)/(2g).

Four real roots: Let a, b, c and d be real roots of G(x1, 0) = 0, a < b < c < d
and the periodic orbit is passing through (a, 0) and (b, 0). Therefore along the
periodic orbits, a ≤ x1 < b < c < d and we have

x2 = ±2
√
−(c− x1)(d− x1)(x1 − a)(b− x1)/(α+ β2).

Now by using (9) and integral tables (see [1]) we obtain√
−(α+ β2)

2

∫ 0

ξ

dσ =

∫ b

x1

dv√
(d− v)(c− v)(v − a)(b− v)

= gsn−1(sinφ, k),

where sn−1 is the inverse Jacobian elliptic function with the modulus k (see [1])
and

φ = sin−1

(√
(c− a)(b− x1)

(b− a)(c− x1)

)
, k2 =

(d− c)(b− a)

(d− b)(c− a)
, g =

2√
(d− b)(c− a)

.

Therefore this periodic orbit is given by

x1(ζ) = a+
(d− c)(b− a)sn2(Ωζ, k)

(d− b) + (b− a)sn2(Ωζ, k)
,

where sn is the Jacobian elliptic function with modulus k (see [1]) and Ω =√
−(α+ β2)/(2g). Now if we consider the periodic orbits inside the right branch
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of double homoclinic orbits for which periodic orbits are passing through (c, 0) and
(d, 0) whith a < b < c < x1 ≤ d then by using a similar procedure we get

x1(ζ) = c+
(d− c)(c− b)sn2(Ωζ, k)

(d− b) + (d− c)sn2(Ωζ, k)
.

There are other cases which correspond to periodic orbits inside homoclinic and
heteroclinic orbits in Figure 1 with α+ β2 > 0 which can be treated similarly and
omitted for the sake of brevity.
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