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Wiener Polarity Index of Tensor Product of

Graphs

Mojgan Mogharrab⋆, Reza Sharafdini and Somayeh Musavi

Abstract

Mathematical chemistry is a branch of theoretical chemistry for discus-
sion and prediction of the molecular structure using mathematical methods
without necessarily referring to quantum mechanics. In theoretical chem-
istry, distance-based molecular structure descriptors are used for modeling
physical, pharmacologic, biological and other properties of chemical com-
pounds. The Wiener Polarity index of a graph G, denoted by WP (G), is the
number of unordered pairs of vertices of distance 3. The Wiener polarity
index is used to demonstrate quantitative structure-property relationships
in a series of acyclic and cycle-containing hydrocarbons. Let G and H be
two simple connected graphs, then the tensor product of them is denoted
by G ⊗ H whose vertex set is V (G⊗H) = V (G) × V (H) and edge set
is E (G⊗H) = {(a, b) (c, d) | ac ∈ E (G) , bd ∈ E (H)}. In this paper, we
aim to compute the Wiener polarity index of G ⊗ H which was computed
wrongly in [J. Ma, Y. Shi and J. Yue, The Wiener polarity index of graph
products, Ars Combin. 116 (2014) 235-244].

Keywords: Topological index, Wiener polarity index, tensor product, graph,
distance.
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1. Introduction
In this section, we first describe some notations which will be kept throughout. A
graph is a structure composed of points (vertices or nodes), connected by lines
(edges or links).

A graph is called finite if both its vertex set and edge setare finite. If e = uv
is an edge of a graph, then we say that e joins the pair vertices u and v. Also
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the vertices u and v are named the end vertices of the edge e. An edge with
identical end vertices is called a loop. We say that a graph is simple whenever
it has no loop and no two of its edges join the same pair of vertices. The set
of finite simple graphs is shown by Γ and the set of finite graphs in which loops
are admitted is denoted as Γ0, so Γ⊂Γ0 [13]. From now on, when we say that
“G is a graph” it means G ∈ Γ, otherwise G ∈ Γ0. For a given graph G, we
show the vertex and edge set of G by V (G) and E(G), respectively. If x is
a vertex of the graph G, the degree of x in G is denoted by degG(x). In the
other words, if for any vertex x ∈ G, NG(x) denotes the set of neighbors that
x ∈ G, i.e. NG (x) = {y ∈ V (G)|xy ∈ E(G)}, then degG (x) = |NG(x)|. The
minimum and maximum degree of all vertices x of a graph G are denoted by δ (G)
and ∆(G), respectively. A walk in G is a sequence of (not necessarily distinct)
vertices v1v2 ...vn, such that vivi+1 ∈ E(G) for i = 1, 2, . . . , n − 1. We call such
a walk a (v1, vn)−walk. A path in the graph is a walk without traversing any
vertex twice. So, a path in the graph is a sequence of adjacent edges without
traversing any vertex twice. The graph is called connected when there is a path
between any pair of vertices in it, otherwise the graph is disconnected. For the
vertices u, v ∈ V (G), the distance between u and v in G is denoted by dG(u, v)
and it is the length of a shortest (u, v)-path in G. If G is a disconnected graph,
then we assume that the distance between any two vertices belonging to different
components of G, is infinity. For a given vertex x ∈ V (G), its eccentricity
ecc(x) is the largest distance between x and any other vertex y ∈ V (G), that is
ecc (x) = Max{dG (x, y) |y ∈ V (G)}. The maximum eccentricity over all vertices
of G is called the diameter of G and denoted by D(G). Also, the minimum
eccentricity among the vertices of G is called the radius of G and denoted by
R(G). Let G and H be two graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
Then we say that H is a subgraph of G and write H ≤ G. Let us denote a cycle
and a path on n vertices by Cn and Pn, respectively. For a graph H, a graph G is
called H-free if it has no subgraph isomorphic to H. So, a graph is called triangle
free if it has no subgraph isomorphic to C3. The adjacency matrix of a graph
G, denoted by A(G), is a (0, 1)−matrix whose rows and columns are indexed by
V (G) and the element A(G)u,v = 1 if and only if uv ∈ E(G) for each u, v ∈ V (G),
otherwise A(G)u,v = 0.

Mathematical Chemistry is a branch of theoretical chemistry for studying
the molecular structure using mathematical methods. Molecular Graphs or Chem-
ical Graphs are models of molecules in which atoms are represented by vertices
and chemical bonds by edges of a graph. The Chemical Graph Theory is a
branch of mathematical chemistry concerned with the study of chemical graphs.
In theoretical chemistry correlation of chemical structure with various physical
properties, chemical reactivity or biological activity are often modeled by means
of molecular-graph-based structure-descriptors, which are also referred to as
topological indices. A topological index is a function TOP from Γ to the set of
real numbers R with this property that TOP (G) = TOP (H), whenever G and H
are isomorphic.
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There exist several types of such indices, especially those based on vertex
and edge distances. The most well-known and successful topological indices with
several applications in QSAR/QSPR studies in chemistry, was introduced by H.
Wiener [27] for acyclic molecules. It is defined as the sum of distances between all
pairs of vertices of the molecular graph. Let G be a simple connected graph. Then
the Wiener index of G is defined as W (G) = 1

2

∑
x,y∈V (G) d(x, y). Let γ(G, k)

be the number of unordered vertex pairs of G for which the distance of them is
equal to k and therefore one can write W (G) =

∑
k≥1 kγ(G, k). In the case k = 3,

the number γ (G, 3) is called the Wiener polarity index of G and denoted by
WP (G).

It is believed that the Wiener index was the first reported distance-based topo-
logical index. This topological index was used for modeling the shape of organic
molecules and for calculating several of their physico-chemical properties [11]. For
example, Wiener used a linear formula to calculate the boiling points of the paraf-
fin (alkanes). More precisely, let A bean alkane with the corresponding (Hydrogen
suppressed) molecular graph G. Then the boiling point tB(A) of A is estimated
as follows

tB (A) = aW (G) + bWP (G) + c,

where a, b and c are constants for a given isomeric group.
Using the Wiener polarity index, Lukovits and Linert demonstrated quanti-

tative structure–property relationships in a series of acyclic and cycle-containing
hydrocarbons [20]. Hosoya [14] found a physical-chemical interpretation of WP (G).
Du, Li and Shi [9] described a linear time algorithm APT for computing the index
of trees and characterized the trees maximizing the index among all trees of a given
order. Deng, Xiao and Tang [7] characterized the extremal trees with respect to
this index among all trees of order n and diameter d. Deng and Xiao [6] studied
the Wiener polarity index of molecular graphs of alkanes with a given number of
methyl group. They also found the maximum Wiener polarity index of chemical
trees with k pendants and characterized the extremal graphs [9]. Deng [8] also
gave the extremal Wiener polarity index of all chemical trees with order n. Liu,
Hou and Huang [18] studied Wiener polarity index of trees with maximum degree
for given number of leaves. Hou, Liu and Huang [15] characterized the maximum
Wiener polarity index of unicyclic graphs. Also Liu and Liu [19] established a
relation between Wiener polarity index and other indices like Zagreb indices and
Wiener index. They also obtained some extremal unicyclic graphs on n vertices
with respect to Wiener polarity index. Behmaram, Yousefi-Azari and Ashrafi [3]
determined the Wiener polarity of fullerenes and hexagonal systems. Chen, Du
and Fan [5] computed the Wiener polarity index of cactus graphs. A. Ilić and M.
Ilić [16] introduced a generalized Wiener polarity index and described a linear time
algorithm for computing these indices for trees and partial cubes, and character-
ized extremal trees maximizing the generalized Wiener polarity index among trees
of given order n. Ou, Feng and Liu [23] characterized minimum Wiener polarity
index of unicyclic graphs with prescribed maximum degree. Ashrafi, Dehghanzade
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and Sharafdini [1] computed maximum Wiener polarity index of bicyclic graphs.
Many graphs can be constructed from simpler graphs via certain operations

called graph products [13, 17]. It is believed that the most difficult one in many
aspects among standard products is the tensor product of graphs. The tensor
product of graphs has been extensively studied in relation to the areas such as
graph colorings, graph recognition, decompositions of graphs, graph embeddings,
matching theory and design theory. For any two graphs G,H ∈ Γ0, their tensor
product (also known as direct product, Kronecker product, categorical product,
cardinal product, relational product, weak direct product conjunction, . . . ) is
denoted by G⊗H whose vertex set and edge set are as follows:

V (G⊗H) = V (G)× V (H)

E(G⊗H) = {(a, b)(c, d) | ac ∈ E(G), bd ∈ E(H)} .

The vertices (a, b) and (c, d) are adjacent in G⊗H, whenever ac is an edge in
G and bd is an edge in H. From the definition, one can get immediately that

|V (G⊗H) | = |V (G) ||V (H) |

and if (a, b) (c, d) ∈ E(G⊗H), then also (a, d) (c, b) ∈ E(G⊗H) and hence

|E (G⊗H) | = 2|E(G)||E(H)|.

Furthermore, we can see degG⊗H ((a, b)) = degG(a)degH(b).

Note. Since a connected graph G is Eulerian if and only if it has no vertices of
odd degree. Therefore, if G⊗H is a connected graph and one of the graphs G or
H is Eulerian graph, then G⊗H is also an Eulerian graph.

We can consider the tensor product as a binary operation on the set Γ0 [26].
It is known that, up to isomorphism, this product is commutative and associative
in a natural way [24]. Also if the graph I ∈ Γ0 denotes a vertex on which there is
a loop, then G ⊗ I ∼= G for any G ∈ Γ0. Therefore I is the identity element for
tensor product as a binary operation.

Note. If we consider the tensor product of graphs as a binary operation on the
set Γ, then this binary operation has no identity element.

By an appropriate ordering of V (G) × V (H), it follows that A(G ⊗ H) =
A(G)⊗A(H), where A(G)⊗A(H) is the Kronecker product of matrices A(G) and
A(H) [25].

Lemma 1. ([4, 13]) Let G and H be two connected graphs. Then the graph
G⊗H is connected if and only if any G or H contains an odd cycle if and only if
at least G or H is non-bipartite. For example, Figures 1, 2 illustrate two examples
of tensor products. Note that, in all Figures the vertex (x, y) in the tensor product
G⊗H is shown by xy.

As is depicted in Figure 2, P3 ⊗ P5 is disconnected.
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Figure 1: P 2 ⊗C5
∼= C10.

Figure 2: The disconnected graph P 3 ⊗ P 5.

Moradi [22] computed Wiener type indices of the tensor product of graphs. In
this article, we concerned about the Weiner polarity index of the tensor product
of graphs. The Wiener polarity index of tensor product of graphs was wrongly
computed in [21]. In order to show a counter example, we need to express the
following lemma.

Lemma 2. For the positive integer n ≥ 3,

WP (Cn) =

 0, n = 3, 4, 5;
3, n = 6;
n, n ≥ 7.

Remark. In [21] the authors (wrongly) stated in Theorem 4.1 that

WP (G⊗H) = 2WP (G)WP (H) + 2WP (H)m (G) + 2WP (G)m (H)

where G and H are two non-trivial connected graphs and at least one of them is
non-bipartite, m (G) and m (H) are the number of edges of the graphs G and H,
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respectively. Let us show that this formula is wrong as it is seen in Figure 1, for
which P2 ⊗ C5

∼= C10 and it follows from Lemma 3 that the left hand side of the
equation in the above formula is WP (P2 ⊗ C5) = WP (C10) = 10, while the right
hand side is zero.

In this article we aim to obtain Wiener polarity index of tensor product of
graphs. Note that our technique is that of used in [22].

2. Main Results
Let G and H be two graphs. In this section, we consider the Wiener Polarity
index of G ⊗H. Since this topological index is defined on the connected graphs,
it follows from Lemma 2 that we need to assume that at least one of the graph G
or H is non-bipartite and thus in this case G⊗H is connected.

Now, let us study some distance properties of the tensor product of graphs.

Definition 3. [22] Let G be a graph and x, y ∈ V (G). Define d′G(x, y) as follows

1. If dG(x, y) is an odd number, then d′G(x, y) is defined as the length of a
shortest even walk joining x and y in G, and if there is no shortest even
walk, then d′G(x, y) = +∞.

2. If dG(x, y) is an even number, then d′G(x, y) is defined as the length of a
shortest odd walk joining x and y in G, and if there is no shortest odd walk,
then d′G(x, y) = +∞.

3. If dG(x, y) = +∞, then d′G(x, y) = +∞.

Note. We take dG(x, y) = +∞, if there is no shortest odd walk and no shortest
even walk between x and y in G. Also, if d′G(x, y) < +∞, then d′G(x, y) ≥ 2 and
so d′G(x, y) ̸= 1.

Definition 4. [21, 22] Let G and H be two graphs and (a, b), (c, d) ∈ V (G⊗H).
The relation ∼ on the vertex set V (G ⊗H) is defined as (a, b) ∼ (c, d) whenever
dG(a, c), dH(b, d) < +∞ and dG(a, c) + dH(b, d) is an even number, hence the
parity of dG(a, c) and dH(b, d) are the same. Therefore (a, b) ≁ (c, d) whenever
dG(a, c) = +∞ or dH(b, d) = +∞ or dG(a, c) + dH(b, d) is an odd number.

Lemma 5. [21, 22] Let G and H be graphs and (a, b), (c, d) ∈ V (G⊗H). Then

dG⊗H ((a, b) , (c, d)) =

{
d1 ((a, b) , (c, d)) if (a, b)∼ (c, d)
d2 ((a, b) , (c, d)) if(a, b) ≁ (c, d)

where

d1((a, b), (c, d)) = Max{dG(a, c), dH(b, d)}
d2((a, b), (c, d)) = min{Max {dG (a, c) , d′H (b, d)} , Max {d′G (a, c) , dH (b, d)}}
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Now let (a, b), (c, d) ∈ V (G ⊗ H) be arbitrary. Then one can see that the dis-
tance between them is depended on (a, b) ∼ (c, d) or (a, b) ≁ (c, d). Hence, if
dG⊗H(a, b), (c, d) = 3 then one may conclude that d1(a, b)(c, d) = 3 or d2(a, b)(c, d) =
3. So, we compute the distance between any two vertices in the graph G⊗H, in
two cases. To proceed, let us discus the first case as follows.

Proposition 6. Suppose that

R1(G⊗H) = {{(a, b) , (c, d)} ⊆ V (G⊗H)| (a, b) ∼ (c, d) & d1 ((a, b) , (c, d)) = 3}.

Then |R1 (G⊗H) | = 2 [m2WP (G) +m1WP (H) +WP (G)WP (H)] , where m1 =
|E (G)| and m2 = |E (H)|.

Proof. If {(a, b) , (c, d)} ∈ R1 (G⊗H), then can conclude that dG (a, c) +
dH(b, d) is an even positive integer. Then only three cases occur as follows:

1. dG (a, c) = 1 and dH (b, d) = 3. In this case, the number of all unordered
pairs that are satisfied in this case is equal to 2m1WP (H).

2. dG (a, c) = 3 and dH (b, d) = 1. In this case, the number of all unordered
pairs that are satisfied in this case is equal to 2m2WP (G) .

3. dG (a, c) = 3 and dH (b, d) = 3. In this case, the number of all unordered
pairs that are satisfied in this case is equal to 2WP (G)WP (H),

and our proof is complete.

Note. One can easily see that if {(a, b) , (c, d)} is satisfied in the condition of
one part, then also {(a, d) , (c, b)} is satisfied.

Definition 7. For a graph G, the following notation is useful for the main results
of this paper. Suppose that

A(G) = {uv ∈ E(G) | NG(u) ∩NG(v) = ∅} = {uv ∈ E(G) | ∀C3 ≤ G;uv /∈ E(C3)},
B(G) = {x ∈ V (G) | ∃u, v ∈ NG(x);uv ∈ E(G)} = {x ∈ V (G) | ∃C3 ≤ G;x ∈ V (C3)},
C(G) = {{u, v} ⊆ V (G)|dG (u, v) = 2 and ∃ (u, v)− walk of length 3},

also AG = |A (G) |, BG = |B (G) | and CG = |C (G) |.

Proposition 8. Suppose that

R2(G⊗H) = {{(a, b)(c, d)} ⊆ V (G⊗H)| (a, b)≁ (c, d) & d2 ((a, b) , (c, d)) = 3}.

Then |R2 (G⊗H) | = 2 [CHφ (G) + CGφ (H)]+BHφ (G)+BGφ (H), where φ (G) =
AG +WP (G) and φ (H) = AH +WP (H).

Proof. Let {(a, b)(c, d)} ∈ R2(G ⊗ H), then we can conclude that dG (a, c) +
dH(b, d) is an odd natural number and

Min{Max{dG(a, c), d′H(b, d)},Max{d′G(a, c), dH(b, d)}} = 3.
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Then two cases occur as follows:

Case (1): Max {dG (a, c) , d′H (b, d)} = 3. In this case, we can easily see that one
of the following holds,

(i) dG (a, c) = 1 , d′H (b, d) = 3;

(ii) dG (a, c) = 3 , d
′
H (b, d) = 3.

Let us investigate each case as follows:

(i) In this case we have dG (a, c) = 1 and d′H (b, d) = 3. If dG (a, c) = 1,
then Max {dG (a, c) , d′H (b, d)} ≤ Max {d′G (a, c) , dH (b, d)} implies that
the even number d′G (a, c) ̸= 2 and so d′G (a, c) ≥ 4. Also, d′H (b, d) = 3
follows that dH (b, d) = 0 or 2. Therefore we have two cases as follows:

If d′H (b, d) = 3 and dH (b, d) = 0, imply that b = d and b ∈ V (C3) for some
C3 ≤ H. If d′H (b, d) = 3 and dH (b, d) = 2, imply that {b, d} ∈ C (H).
It follows that the number of all unordered vertex pairs {(a, b) , (c, d)} ⊆
V (G⊗H) satisfying (i) is equal to AGBH + 2AGCH .

(ii) Let dG (a, c)= 3, furthermore the hypothesize d
′
H (b, d)= 3 implies that

dH (b, d)= 0 or 2. If dH (b, d) = 0, then we can conclude that b = d and
b ∈ V (C3) for some C3 ≤ H. If dH (b, d) = 2, then {b, d} ∈ C (H). It follows
that the number of all unordered vertex pairs{(a, b) , (c, d)} ⊆ V (G⊗H)
satisfying (ii) is equal to BHWP (G) + 2CHWP (G).

Consequently, the number of all unordered vertex pairs {(a, b) , (c, d)} ⊆ V (G⊗H)
satisfying in Case (1) is equal to AGBH + 2AGCH + BHWP (G) + 2CHWP (G).

Case (2): Max {d′G (a, c) , dH (b, d)} = 3. By a similar argument as Case (1), we
can conclude that |R2 (G⊗H) | = 2 [CHφ (G) + CGφ (H)] + BHφ (G) + BGφ (H).

The following theorem is our main result which is a direct consequence of
Propositions 6 and 8.

Theorem 9. Let G and H be two graphs at least one of them is non-bipartite.
Then

WP (G⊗H) = 2 [(mG + CH)WP (G) + (mH + CG)WP (H) +AGCH +AHCG]
+ BH (AG +WP (G)) + BG (AH +WP (H)) ,

where mG and mH denote the number of edges of G and H, respectively.

Note. Let G be a simple connected graph. For any unordered vertex pair {u, v} ∈
C (G), either of the following holds:
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i. The vertices u and v are two non-adjacent vertices of a cycle of length 5 of
G.

ii. The vertices u and v are the vertices as depicted in Figure 3.

Figure 3: Example of part ii of Note up to isomorphism.

Therefore, if G is a triangle free graph, then one can see that AG = |E (G) |, BG =
0. Also, {u, v} ∈ C (G) if and only if u, v are vertices of a cycle of length 5 of the
graph G. Therefore, CG = 0 whenever the graph G is C5-free.

Corollary 10. Let G and H be two simple connected Ck-free graphs for k ∈ {3, 5}.
Then

WP (G⊗H) = 2 [mHWP (G) +mGWP (H)] ,

where mG and mH denote the number of edges of G and H, respectively.

A graph is called strongly triangular if every pair of its vertices has a com-
mon neighbor.

Corollary 11. Let G be a connected graph and H be a strongly triangular graph.
Then

WP (G⊗H) = 2
[(nH

2

)
W

P
(G) +AG(

(nH

2

)
−mH)

]
+ nH (AG +WP (G)) ,

where mH and nH denote the number of edges and the number of vertices of H,
respectively.

Proof. Let H be strongly triangular graph. Then each edge of H belongs to a
cycle of length 3, i.e. C3. It follows that AH= 0, BH = |V (G) |. Let u and v be
two arbitrary non-adjacent vertices of H. Since H is strongly triangular, u and v
have a common neighbor say w. Let zv be common neighbor of vertices u and w.
In this case uwv and uzwv are paths of length 2 and 3, respectively. Therefore
CG =

(
n
2

)
−m. In the other hand, WP (H) = 0 since every two arbitrary vertices

of H are adjacent or of distance 2. Hence the proof is done by Theorem 9.
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Let P denote the Petersen graph. Now we apply our main theorem to P ⊗G,
where G is one of the following well-known graphs,

• Kn= The complete graph on n vertices;

• Wn = The wheel on n vertices;

• Sn = The star graph on n vertices;

• Kr,s = The complete bipartite graph whose parts are of size r and s;

• Q3 = The hyper cube graph on 8 vertices.

Our computations are summarized in the Table 1.

Table 1: Wp(P ⊗−).
G n m D(G) AG BG CG WP (G) WP (P

⊗
G)

P 10 15 2 15 0 30 0 1800
C3 3 3 1 0 3 0 0 45
C4 4 4 2 4 0 0 0 240
C5 5 5 2 5 0 5 0 450
C6 6 6 3 6 0 0 3 630

Cn , n ≥ 7 n n [n/2] n 0 0 n 150n
Sn n n − 1 2 n − 1 0 0 0 60(n − 1)
Kn n n(n − 1)/2 1 0 n 0 0 15n
Kr,s r + s rs 2 rs 0 0 0 60rs

Wn , n ≥ 5 n 2n − 2 2 0 n n − 1 0 15(3n − 2)
Q3 8 12 3 12 0 0 4 1080
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