Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order α

Mohammad Taati^, Sirous Moradi and Shahram Najafzadeh

Abstract

In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order α. We give some sufficient conditions for functions belonging to this class.

Keywords: Polynomial analytic functions, starlike functions, meromorphic functions.

2010 Mathematics Subject Classification: 30C45, 30C80.

1. Introduction

Let \sum denotes the class of all functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the punctured open unit disk

$$
\mathbb{U}^{*}=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=\mathbb{U}-\{0\} .
$$

A function $f \in \sum$ is said to be in the class $\mathcal{M S}^{*}(\alpha)$ of meromorphic starlike functions of order α if it satisfies the inequality

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)<-\alpha, \quad(0 \leq \alpha<1, z \in \mathbb{U}) . \tag{2}
\end{equation*}
$$

*Corresponding author (E-mail: m_taati@pnu.ac.ir \& motaati@gmail.com)
Academic Editor: Gholam Hossein $\overline{\text { Fath-Tabar }}$
Received 21 November 2016, Accepted 23 January 2017
DOI: 10.22052/mir.2017.67848.1047

We get, $\mathcal{M S}^{*}(0)=\mathcal{M S}^{*}$.
Furthermore, a function $f \in \mathcal{M} \mathcal{S}^{*}$ is said to be in the class $\mathcal{N S}{ }^{*}(\alpha)$ of meromorphic starlike of reciprocal order α if and only if

$$
\begin{equation*}
\Re\left(\frac{f(z)}{z f^{\prime}(z)}\right)<-\alpha, \quad(0 \leq \alpha<1, z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

In recent years, several authors studied meromorphic starlike functions and starlike functions of reciprocal. We can see the earlier work by Ali and Ravichandran $[1-3]$ and Cho et al. $[5,6]$ and (more recently) by Nunokawa et al. [9, 10], Silverman et al. [11], Srivastava et al. [12], Wang et al. [14-19] and the references therein.

Yong Sun et al. [13] obtained some sufficient conditions for the functions belonging to the class $\mathcal{N} \mathcal{S}^{*}(\alpha)$.

In this paper, we introduce a new class of analytic starlike functions. Also we give some sufficient conditions for functions which belongs to the new class.

2. Preliminaries

Let \mathcal{P} denote the class of functions $P(z)$ given by

$$
\begin{equation*}
P(z)=1+\sum_{k=1}^{\infty} P_{k} z^{k} \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

which are analytic in \mathbb{U}.
Lemma 2.1. [[7] If the function $p \in \mathcal{P}$ is given by (4) and satisfied the condition $\Re(p(z))>0$, then $\left|p_{k}\right| \leq 2, k \in \mathbb{N}$.

Let $0 \leq \alpha<1, \mathcal{P}^{*}(\alpha)$ denotes the class of all functions $p(z) \in \mathcal{P}$ and satisfies the condition

$$
\begin{equation*}
\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right)<1-\alpha . \tag{5}
\end{equation*}
$$

We set $\mathcal{P}^{*}(0)=\mathcal{P}^{*}$.
Finally, let $0 \leq \alpha<1$. We introduce the notation $\mathcal{N} \mathcal{P}^{*}(\alpha)$ for the class of all mappings $p(z) \in \mathcal{P}^{*}$ satisfying the following condition:

$$
\begin{equation*}
\Re\left(\frac{p(z)}{z p^{\prime}(z)-p(z)}\right)<-\alpha \tag{6}
\end{equation*}
$$

Obviously, $p(z) \in \mathcal{N} \mathcal{P}^{*}(\alpha)$ if and only if $f(z)=\frac{1}{z} p(z) \in \mathcal{N} \mathcal{S}^{*}(\alpha)$.
Remark 1. For $0<\alpha<1$, the function $p \in \mathcal{P}$ belongs to the class $\mathcal{N} \mathcal{P}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{p(z)}+\frac{1-2 \alpha}{2 \alpha}\right|<\frac{1}{2 \alpha} . \tag{7}
\end{equation*}
$$

In the following, we give several examples of functions of belonging to the class $\mathcal{N P}{ }^{*}(\alpha)$.

Example 2.2. Let $p \in \mathcal{P}$ satisfies the inequality

$$
\left|\frac{z p^{\prime}(z)}{p(z)}\right|<1-\alpha \quad(0 \leq \alpha<1, z \in \mathbb{U}) .
$$

Then

$$
\left|\frac{z p^{\prime}(z)}{p(z)}+\frac{\alpha}{2}\right| \leq\left|\frac{z p^{\prime}(z)}{p(z)}\right|+\frac{\alpha}{2}<1-\alpha+\frac{\alpha}{2} \leq \frac{\alpha+2}{2},
$$

therefore $p \in \mathcal{N} \mathcal{P}^{*}\left(\frac{1}{\alpha+2}\right)$.
Example 2.3. Let the function $p(z) \in \mathcal{P}$ be in the form

$$
p(z)=e^{(1-\alpha) z} \quad(0<\alpha<1, z \in \mathbb{U})
$$

This gives us that

$$
\Re\left(\frac{z p^{\prime}(z)}{p(z)}\right)=\Re((1-\alpha) z)<1-\alpha .
$$

Therefore, $p(z) \in \mathcal{P}^{*}(\alpha)$. Moreover, we have

$$
\frac{p(z)}{z p^{\prime}(z)-p(z)}=\frac{1}{(1-\alpha) z-1} .
$$

It follows that

$$
\Re\left(\frac{p(z)}{z p^{\prime}(z)-p(z)}\right)=\Re\left(\frac{1}{(1-\alpha) e^{i \theta}-1}\right)<-\frac{1}{2-\alpha} \quad\left(z=e^{i \theta}\right)
$$

Therefore, $p(z) \in \mathcal{N} \mathcal{P}^{*}\left(\frac{1}{2-\alpha}\right)$.
In order to obtain our main results, we need the following lemmas.
Lemma 2.4. (Jack's lemma [8]) Let φ be a non-constant regular function in \mathbb{U}. If $|\varphi|$ attains its maximum value on circle $|z|=r<1$ at z_{0}, then

$$
z_{0} \varphi^{\prime}\left(z_{0}\right)=k \varphi\left(z_{0}\right)
$$

where $k \geq 1$ is a real number.
Lemma 2.5. (See, [4]) Let Ω be a set in the complex plane \mathbb{C} and suppose that Φ is a mapping from $\mathbb{C}^{2} \times \mathbb{U}$ to \mathbb{C} which satisfies $\phi(i x, y ; z) \notin \Omega$ for $z \in \mathbb{U}$, and for all real numbers x, y such that $y \leq-\frac{1+x^{2}}{2}$. If $p(z) \in \mathcal{P}$ and $\phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathbb{U}$, then $\Re(p(z))>0$.

3. Main Results

We begin this section by presenting the following coefficient sufficient conditions for functions belonging to the class $\mathcal{N} \mathcal{P}^{*}(\alpha)$.

Theorem 3.1. If $p \in \mathcal{P}$ satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty}[1+\alpha(k-1)]\left|p_{k}\right| \leq \frac{1}{2}(1-|1-2 \alpha|) \tag{8}
\end{equation*}
$$

Then $p \in \mathcal{N P}^{*}(\alpha)$, for $0<\alpha<1$.
Proof. Using Remark 1 only need to show that

$$
\begin{equation*}
\left|\frac{2 \alpha z p^{\prime}(z)}{p(z)}+1-2 \alpha\right|<1 \quad(z \in \mathbb{U}) \tag{9}
\end{equation*}
$$

We first observe that

$$
\begin{aligned}
\left|\frac{2 \alpha z p^{\prime}(z)+(1-2 \alpha) p(z)}{p(z)}\right| & =\left|\frac{(1-2 \alpha)+\sum_{k=1}^{\infty}[1+2 \alpha(k-1)] p_{k} z^{k}}{1+\sum_{k=1}^{\infty} p_{k} z^{k}}\right| \\
& \leq \frac{|1-2 \alpha|+\sum_{k=1}^{\infty}[1+2 \alpha(k-1)]\left|p_{k}\right||z|^{k}}{1-\sum_{k=1}^{\infty}\left|p_{k}\right| \mid z^{k}} \\
& <\frac{|1-2 \alpha|+\sum_{k=1}^{\infty}[1+2 \alpha(k-1)]\left|p_{k}\right|}{1-\sum_{k=1}^{\infty}\left|p_{k}\right|}
\end{aligned}
$$

Now, by using the inequality (8), we have

$$
\begin{equation*}
\frac{|1-2 \alpha|+\sum_{k=1}^{\infty}[1+2 \alpha(k-1)]\left|p_{k}\right|}{1+\sum_{k=1}^{\infty}\left|p_{k}\right|}<1 \tag{10}
\end{equation*}
$$

which, combined with (9) and (10), completes the proof of theorem.
Example 3.2. The function $p(z)$ given by

$$
p(z)=1+\sum_{k=1}^{\infty} \frac{1-|1-2 \alpha|}{k(k+1)[1+\alpha(k-1)]} z^{n}
$$

belongs to the class $\mathcal{N} \mathcal{P}^{*}(\alpha)$, for $0<\alpha<1$.

By using Jack's lemma, we now obtain the following result for the class $\mathcal{N} \mathcal{P}^{*}(\alpha)$.
Theorem 3.3. If $p \in \mathcal{P}$ satisfies

$$
\begin{equation*}
\left|\frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right|<1-\alpha . \tag{11}
\end{equation*}
$$

Then $p \in \mathcal{N} \mathcal{P}^{*}(\alpha)$, for $\frac{1}{2} \leq \alpha<1$.
Proof. Let

$$
\begin{equation*}
\varphi(z)=\frac{\alpha}{1-\alpha} \frac{z p^{\prime}(z)}{p(z)} \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right) \tag{12}
\end{equation*}
$$

Then the function $\varphi(z)$ is analytic in \mathbb{U} with $\varphi(0)=0$ and it follows from (12) that

$$
\begin{equation*}
\frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}-\frac{z p^{\prime}(z)}{p(z)}=\frac{(1-\alpha) z \varphi^{\prime}(z)}{(1-\alpha) \varphi(z)-\alpha} \tag{13}
\end{equation*}
$$

therefore

$$
\left|\frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right|=\left|\frac{(1-\alpha) z \varphi^{\prime}(z)}{(1-\alpha) \varphi(z)-\alpha}\right|<1-\alpha .
$$

Next, we claim that $|\varphi(z)|<1$. Indeed, if not, there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}=\left|\varphi\left(z_{0}\right)\right|=1 .
$$

Applying Jack's lemma to $\varphi(z)$ at the points z_{0}, we have

$$
\varphi\left(z_{0}\right)=e^{i \theta}, \quad \frac{z_{0} \varphi^{\prime}\left(z_{0}\right)}{\varphi\left(z_{0}\right)}=k \quad(k \geq 1)
$$

This gives us

$$
\left|\frac{z_{0}^{2} p^{\prime \prime}\left(z_{0}\right)}{z_{0} p^{\prime}\left(z_{0}\right)-p\left(z_{0}\right)}-\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right|^{2}=\left|\frac{k(1-\alpha)}{(1-\alpha)-\alpha e^{-i \theta}}\right| \geq\left|\frac{1-\alpha}{(1-\alpha)-\alpha e^{-i \theta}}\right| .
$$

This implies that

$$
\begin{aligned}
\left|\frac{z_{0}^{2} p^{\prime \prime}\left(z_{0}\right)}{z_{0} p^{\prime}\left(z_{0}\right)-p\left(z_{0}\right)}-\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right|^{2} & \geq \frac{(1-\alpha)^{2}}{(1-\alpha)^{2}+\alpha^{2}-2 \alpha(1-\alpha) \cos \theta} \\
& \geq \frac{(1-\alpha)^{2}}{(1-\alpha)^{2}+\alpha^{2}+2 \alpha(1-\alpha)} \\
& =(1-\alpha)^{2}
\end{aligned}
$$

This contradicts to the condition (11). Therefore, we conclude that $|\varphi(z)|<1$ which shows that

$$
|\varphi(z)|=\left|\frac{\alpha}{1-\alpha} \frac{z p^{\prime}(z)}{p(z)}\right|<1
$$

or

$$
\left|\frac{z p^{\prime}(z)}{p(z)}\right|<\frac{1-\alpha}{\alpha} \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right)
$$

Thun, we have

$$
\left|\frac{z p^{\prime}(z)}{p(z)}+\frac{1-2 \alpha}{2 \alpha}\right| \leq\left|\frac{z p^{\prime}(z)}{p(z)}\right|+\left|\frac{1-2 \alpha}{2 \alpha}\right|<\frac{1-\alpha}{\alpha}-\frac{1-2 \alpha}{2 \alpha}=\frac{1}{2 \alpha},
$$

which completes the proof.
Example 3.4. Let us consider the function $p(z) \in \mathcal{P}$ given by

$$
p(z)=1+p_{1} z \quad(z \in \mathbb{U})
$$

with

$$
p_{1}=\frac{1-\alpha}{2-\alpha}
$$

for some $\frac{1}{2} \leq \alpha<1$, then we see that $0<p_{1} \leq \frac{1}{3}$. According to

$$
\left|\frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right|=\left|\frac{-p_{1} z}{1+p_{1} z}\right|<\frac{p_{1}}{1-p_{1}}=1-\alpha
$$

and

$$
\Re\left(\frac{p(z)}{z p^{\prime}(z)-p(z)}\right)=\Re\left(-1-p_{1} z\right) \leq p_{1}-1=\frac{1}{\alpha-2}<-\alpha
$$

we have, $p(z) \in \mathcal{N} \mathcal{P}^{*}(\alpha)$ for $\frac{1}{2} \leq \alpha<1$.
Theorem 3.5. If $p \in \mathcal{P}$ satisfies

$$
\mathbb{R}\left(\frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right)< \begin{cases}\frac{\alpha}{2(1-\alpha)} & \left(0 \leq \alpha \leq \frac{1}{2}\right) \tag{14}\\ \frac{1-\alpha}{2 \alpha} & \left(\frac{1}{2} \leq \alpha<1\right)\end{cases}
$$

then $p \in \mathcal{N P}^{*}(\alpha)$, for $0 \leq \alpha<1$.
Proof. Suppose that

$$
\begin{equation*}
q(z)=\frac{-\frac{p(z)}{z p^{\prime}(z)-p(z)}-\alpha}{1-\alpha} \quad(0 \leq \alpha<1, z \in \mathbb{U}) \tag{15}
\end{equation*}
$$

then q is analytic in \mathbb{U}. It follows from (15) that

$$
\frac{z p^{\prime}(z)}{p(z)}-\frac{z^{2} p^{\prime}(z)}{z p^{\prime}(z)-p(z)}=\frac{(1-\alpha) z q^{\prime}(z)}{\alpha+(1-\alpha) q(z)}=\phi\left(q(z), z q^{\prime}(z) ; z\right)
$$

where

$$
\phi(r, s ; z)=\frac{(1-\alpha) s}{\alpha+(1-\alpha) r}
$$

For all real numbers x and y satisfying $y \leq-\frac{1+x^{2}}{2}$, we have

$$
\begin{aligned}
\Re(\phi(i x, y ; z)) & =\frac{(1-\alpha) \alpha y}{\alpha^{2}+(1-\alpha)^{2} x} \\
& \leq-\frac{(1-\alpha) \alpha}{2} \cdot \frac{1+x^{2}}{\alpha^{2}+(1-\alpha)^{2} x^{2}} \\
& \leq \begin{cases}-\frac{(1-\alpha) \alpha}{2} \cdot \frac{1}{(1-\alpha)^{2}}=-\frac{\alpha}{2(1-\alpha)} & \left(0 \leq \alpha \leq \frac{1}{2}\right) \\
-\frac{(1-\alpha) \alpha}{2} \cdot \frac{1}{\alpha^{2}}=-\frac{1-\alpha}{2 \alpha} & \left(\frac{1}{2} \leq \alpha<1\right)\end{cases}
\end{aligned}
$$

We now put

$$
\Omega=\left\{z: \Re(z)>\left\{\begin{array}{ll}
-\frac{\alpha}{2(1-\alpha)} & \left(0 \leq \alpha \leq \frac{1}{2}\right) \\
-\frac{1-\alpha}{2 \alpha} & \left(\frac{1}{2} \leq \alpha<1\right)
\end{array}\right\}\right.
$$

then $\phi(i x, y ; z) \notin \Omega$ for all x, y such that $y \leq-\frac{1+x^{2}}{2}$. Moreover, in view of (14), we get $\phi\left(q(z), z q^{\prime}(z) ; z\right)$. Thus, by Lemma 2.5, we deduce that

$$
\Re(q(z))>0 \quad(z \in \mathbb{U})
$$

which implies that $p \in \mathcal{N} \mathcal{P}^{*}(\alpha)$.
Theorem 3.6. If $p \in \mathcal{P}$ satisfies

$$
\begin{equation*}
\Re\left(\frac{p(z)}{z p^{\prime}(z)-p(z)}\left(1+\beta \frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}\right)\right)<\frac{1}{2} \beta(\alpha+3)-\alpha \tag{16}
\end{equation*}
$$

then $p \in \mathcal{N} \mathcal{P}^{*}(\alpha)$, for $0 \leq \alpha<1$ and $\beta \geq 0$.
Proof. Suppose that

$$
\begin{equation*}
q(z)=\frac{-\frac{p(z)}{z p^{\prime}(z)-p(z)}-\alpha}{1-\alpha} \quad(0 \leq \alpha<1 ; z \in \mathbb{U}) . \tag{17}
\end{equation*}
$$

Then ϕ is analytic in \mathbb{U}. It follows from (17) that

$$
\begin{equation*}
1+\beta \frac{z^{2} p^{\prime \prime}(z)}{z p^{\prime}(z)-p(z)}=\frac{\beta\left[(1-\alpha) z q^{\prime}(z)-1\right]}{(1-\alpha) q(z)+\alpha}+1-\beta \tag{18}
\end{equation*}
$$

Combining with (17) and (18), we get

$$
\begin{aligned}
\frac{p(z)}{z p^{\prime}(z)-p(z)}\left(1+\beta \frac{z^{2} p^{\prime \prime}(z)}{p^{\prime}(z)-p(z)}\right) & =\beta(1-\alpha) z p^{\prime}(z)+(1-\beta)(1-\alpha) p(z) \\
& +(1-\beta) \alpha-\beta \\
& =\phi\left(q(z), z q^{\prime}(z) ; z\right)
\end{aligned}
$$

where

$$
\phi(r, s ; z)=\beta(1-\alpha) s+(1-\beta)(1-\alpha) r+(1-\beta) \alpha-\beta
$$

For all real numbers x and y satisfying $y \leq-\frac{1+x^{2}}{2}$, we have

$$
\begin{aligned}
\Re(\phi(i x, y ; z)) & =\beta(1-\alpha) y+(1-\beta) \alpha-\beta \\
& \leq-\frac{\beta(1-\alpha)}{2}\left(1+x^{2}\right)+(1-\beta) \alpha-\beta \\
& \leq-\frac{\beta(1-\alpha)}{2}+(1-\beta) \alpha-\beta \\
& =\alpha-\frac{1}{2} \beta(\alpha+3) \quad(0 \leq \alpha<1) .
\end{aligned}
$$

If we set

$$
\Omega=\left\{z: \Re(z)>\alpha-\frac{1}{2} \beta(\alpha+3)\right\}
$$

then, by Lemma 2.5, we conclude that

$$
\Re(q(z))>0 \quad(z \in \mathbb{U})
$$

which implies the assertion of theorem holds.
Theorem 3.7. If $p \in \mathcal{P}$ satisfies

$$
\begin{equation*}
\left|\left(1-2 \alpha+\frac{2 \alpha z p^{\prime}(z)}{p(z)}\right)^{\prime}\right| \leq \beta|z|^{\gamma} \tag{19}
\end{equation*}
$$

then $p \in \mathcal{N P}^{*}(\alpha)$, for $0<\alpha<1,0<\beta \leq \gamma+1$ and $\gamma \geq 0$.
Proof. For $p \in \mathcal{P}$, we set

$$
q(z)=z\left(1+2 \alpha+\frac{2 \alpha z p^{\prime}(z)}{p(z)}\right) \quad(z \in \mathbb{U})
$$

then $q(z)$ is regular in \mathbb{U} and $q(0)=0$.
The condition of the theorem gives us

$$
\left|\left(1-2 \alpha+\frac{2 \alpha z p^{\prime}(z)}{p(z)}\right)^{\prime}\right|=\left|\left(\frac{q(z)}{z}\right)^{\prime}\right| \leq \beta|z|^{\gamma} \quad(z \in \mathbb{U})
$$

It follow that

$$
\left|\left(\frac{q(z)}{z}\right)^{\prime}\right|=\left|\int_{0}^{z}\left(\frac{q(u)}{u}\right)^{\prime} d u\right| \leq \int_{0}^{|z|} \beta|u|^{\gamma} d|u|=\frac{\beta}{\gamma+1}|z|^{\gamma+1} .
$$

This implies that

$$
\left|\left(\frac{q(z)}{z}\right)^{\prime}\right| \leq \frac{\beta}{\gamma+1}|z|^{\gamma+1}<1 \quad(1<\beta<\gamma+1, \gamma \geq 0)
$$

Therefore, by definition of $q(z)$, we have

$$
\left|1-2 \alpha+\frac{2 \alpha z p^{\prime}(z)}{p(z)}\right|<1
$$

or

$$
\left|\frac{z p^{\prime}(z)}{p(z)}+\frac{1-2 \alpha}{2 \alpha}\right|<\frac{1}{2 \alpha}
$$

This implies that $p \in \mathcal{N} \mathcal{P}^{*}(\alpha)$.

References

[1] R. M. Ali, V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math. 14(4) (2010) 1479-1490.
[2] R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31(2) (2008) 193-207.
[3] R. M. Ali, V. Ravichandran, N. Seenivasagan, On subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 33(2) (2010) 311-324.
[4] M. K. Aouf, Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function, Appl. Math. Comput. 206(2) (2008) 772-780.
[5] N. E. Cho, Argument estimates of certain meromorphic functions, Commun. Korean Math. Soc. 15(2) (2000) 263-274.
[6] N. E. Cho, O. S. Kwon, A class of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. (2) 33(3) (2010) 429-437.
[7] A. W. Goodman, Univalent Functions, Vol. I. Mariner Publishing Co., Inc., Tampa, FL, 1983.
[8] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971) 469-474.
[9] M. Nunokawa, O. P. Ahuja, On meromorphic starlike and convex functions, Indian J. Pure Appl. Math. 32(7) (2001) 1027-1032.
[10] M. Nunokawa, Sh. Owa, J. Nishiwaki, K. Kuroki, T. Hayami, Differential subordination and argumental property, Comput. Math. Appl. 56(10) (2008) 2733-2736.
[11] H. Silverman, K. Suchithra, B. A. Stephen, A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl. Art. ID 931981 (2008) 9 pp.
[12] H. M. Srivastava, D. G. Yang, N. Xu, Some subclasses of meromorphically multivalent functions associated with a linear operator, Appl. Math. Comput. 195(1) (2008) 11-23.
[13] Y. Sun, W. P. Kuang, Z. G. Wang, On meromorphic starlike functions of reciprocal order α, Bull. Malays. Math. Sci.Soc. (2) 35(2) (2012), 469-477.
[14] Z. G. Wang, Y. P. Jiang, H. M. Srivastava, Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function, Comput. Math. Appl. 57(4) (2009), 571-586.
[15] Z. G. Wang, Z. H. Liu, Y. Sun, Some subclasses of meromorphic functions associated with a family of integral operators, J. Inequal. Appl. Art. ID 931230 (2009) 18 pp.
[16] Z. G. Wang, Z. H. Liu, R. G. Xiang, Some criteria for meromorphic multivalent starlike functions, Appl. Math. Comput. 218(3) (2011) 1107-1111.
[17] Z. G. Wang, Y. Sun, Z. H. Zhang, Certain classes of meromorphic multivalent functions, Comput. Math. Appl. 58(7) (2009) 1408-1417.
[18] Z. G. Wang, Z. H. Liu, A. Cǎtas, On neighborhoods and partial sums of certain meromorphic multivalent functions, Appl. Math. Lett. 24(6) (2011) 864-868.
[19] R. G. Xiang, Z. G. Wang, M. Darus, A family of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. (2) 33(1) (2010) 121-131.

Mohammad Taati
Department of Mathematics, Payame Noor University,
P.O.Box 19395-3697, Tehran, Iran

E-mail: m_taati@pnu.ac.ir \& motaati@gmail.com
Sirous Moradi
Department of Mathematics, Faculty of Science,
Arak University,
Arak 38156-8-8349, Iran
E-mail: s_moradi@araku.ac.ir \& Sirousmoradi@gmail.com
Shahram Najafzadeh
Department of Mathematics,
Payame Noor University,
P.O.Box 19395-3697, Tehran, Iran

E-mail: najafzadeh1234@yahoo.ie

