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Abstract

In this paper we investigate the geometric structures of M(n, 2) contain-
ing n points in R3 having two distinct distances. We will show that up to
pseudo-equivalence there are 5 constructible models for M(4, 2) and 17 con-
structible models for M(5, 2).
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1. Introduction

The study of the geometric structures M(n, k) containing n points in R3 having k
distinct distances is the 3 dimensional version of the Erdos’s problem [5]: What is
the minimum number of distinct distances determined by n points in the plane?
Moser [7] and Chung [2] found some lower bounds for this number. We refer
to [1, 3, 6] for further study on the problem.

In [8], we introduced the structures M(n, k). Our motivation is the study
of the geometric structure of the molecules in terms of the number of distinct
distances between atoms. Here, the points are used as atoms. For example a
molecule of methane, CH4, is structured with four hydrogen atoms at the vertices
of a regular tetrahedron and the carbon atom at the centroid, so this molecule
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is a model for M(5, 2), namely five points(atoms) with 2 distinct distances. Our
goal is to obtain a necessary (not sufficient) condition to determine which of the
M(n, k) structures are eligible for a molecule. For example we can’t find 5 points
in R3 whose pair-wise distances are equal, so it is impossible to find a molecule
with structure M(5, 1). In this case, we say M(5, 1) is not constructible. We also
recognize when two structures for M(n, k) are equivalent. In [8], we have defined
the concepts of similarity and pseudo equivalence for the constructible models and
have shown that up to similarity there exist uncountable models M(n, k), and up
to pseudo equivalence the number of possible models for M(n, k) is finite. Here,
we investigate the case k = 2, namely structures containing n points having two
distinct distances.

2. Constructible Models and Pseudo Equivalence
The number of real numbers which can be attributed to the pairwise distances of
n points in R3 is at most n(n− 1)/2, the number of edges.

Definition 2.1. Let p1, p2, . . . , pn be points in R3 such that

card{d(pi, pj)|i 6= j, i, j = 1, 2, . . . , n} = k,

(d is the Euclidean distance). Then the set {p1, p2, . . . , pn} is called a model for
M(n, k). We say M(n, k) is constructible if there exists a model for it.

For example there is at most four points in R3 such that their pairwise distances
are equal (the vertices of a regular tetrahedron), and any other points connect to
this model, make an additional distances. So M(n, 1) is not constructible for
n > 4.

The following statements have been proved in [8]:

• For each k ∈ N, there exists an n ∈ N such that M(n, k) is constructible.

• M(2k, k), M(2k + 1, k), and M(2k + 2, k) are constructible for all k ∈ N.

• For each k ∈ N there exists a maximum N ∈ N such that M(N, k) is con-
structible.

Now we prove some facts for k = 2.

Proposition 2.2. Let n > 4. In every constructible model for M(n, 2), there is a
point pj such that card{d(pi, pj)|i 6= j, i, j = 1, 2, . . . , n} = 2.

Proof. If card{d(pi, pj)|i 6= j, i, j = 1, 2, . . . , n} = 1 for all j, then we have only
one distance. So it is a model for M(n, 1).

Proposition 2.3. Let n ≥ 3. If M(n, 2) is not constructible then M(n+ 1, 2) is
not constructible too.
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Proof. Suppose M(n + 1, 2) is constructible. Let p1, p2, . . . , pn+1 be the points
of this model and p1 be the point which has two distances from other points.
Define an (n + 1) × (n + 1) matrix (aij) correspond to this model by taking
aij = d(pi, pj), (a symmetric matrix which the elements of the main diagonal
are zero). In the first column we have n nonzero elements which are equal to
two distances. Since n ≥ 3, at least one of the distances appears in two rows.
Assume that one distance is repeated in the jth row. By deleting this row and
the jth column we obtain an n× n matrix which represents a model for M(n, 2).
Note that {p1, p2, . . . , pj−1, pj+1, . . . , pn+1} is a model for M(n, 2). So, M(n, 2) is
constructible.

Corollary 2.4. For n ≥ 3, each model of M(n + 1, 2) is obtained by adding a
point to a model of M(n, 2).

Definition 2.5. Let m,m1,m2, . . . ,mk are natural numbers such that

m = m1 +m2 + · · ·+mk , 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk.

Then the summand m1 +m2 + · · ·+mk is called a k-partition for m.

Notation. We correspond to each modelM(n, k), a k-partition of m = n(n−1)/2
(the number of edges) as follow. Let d1, d2, . . . , dk be the distances in this model
and mj be the number of edge with length dj . Without loss of generality we can
assume m1 ≤ m2 ≤ · · · ≤ mk. Then the number of all edges is

m = m1 +m2 + · · ·+mk.

We also correspond to each model M(n, k), a graph with n vertices in which the
edges with same length have same color.

Definition 2.6. Let n, k ∈ N, and M1 and M2 be models for M(n, k) whose
points are {p1, p2, . . . , pn} and {q1, q2, . . . , qn} respectively. We say M1 and M2

are pseudo- equivalent if their corresponding graphs are isomorphic.

Note that if the partitions of two models are not identical, they can’t be pseudo-
equivalent. We also emphasize that it is possible that two pseudo equivalent models
have different shape geometrically, but we can obtain one from the other by moving
points. So, the equality of two edges saved by this moving. It is easy to check that
pseudo equivalence is an equivalence relation.

Example 2.7. Consider the models in Figure 1 forM(4, 2). They are the vertices
of a pyramid, a square, and a kite.

These models are not pseudo-equivalent. The partitions of (a) and (b) are 3+3
and 2+4, respectively. So, they are not pseudo-equivalent. Both (b) and (c) have
same partition 2+4. But in (b) the same length edges are not adjacent while in (c)
they are. In fact (c) has a point with the same distance to other vertices (upper
point) and (b) has no such point.
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Figure 1: Some shapes for M(4, 2).

Proposition 2.8. Up to pseudo-equivalence, there is only one model ForM(3, 2).

Proof. The number of edge for such model is
(
3
2

)
= 3, the only 2 partition for 3

is 1+2, and the only possible geometric shape is an isosceles triangle, d1 = 1, 0 <
d2 6= 1.

In the following two sections, we’ll determine all possible constructible models
for M(4, 2) and M(5, 2) up to pseudo-equivalence.

3. Pseudo-Equivalent Models for M(4, 2)

The number of edges in a M(4, 2) model is
(
4
2

)
= 6. The 2−partitions for 6 are

1+5, 2+4, and 3+3. The graphs correspond to these partitions have been shown
in Table 1.

Table 1: 2−Partitions of 6 with corresponding graphs.

All possible shapes for these models have been shown in Table 2. We computed
the distances carefully by taking d1 = 1. As you see in the Table 2, some shapes
are planar (rhombus, triangle, square, kite, and trapezoid) and the rest are several
pyramids. For example the vertices of a pyramid or a rhombus are the geometrical
configurations for model (1), and the vertices of a square and a pyramid indicate
shapes for model (2). The shapes for models (3), (4), and (5) are obtained similarly.
The geometric shapes in each row are pseudo equivalent.

Thus, we have proved the following theorem.

Theorem 3.1. Up to pseudo-equivalence, there are exactly five models forM(4, 2).

Corollary 3.2. The number of pseudo-equivalence models for k = 2 is finite.
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Table 2: All possible shapes for M(4, 2).
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Proof. Up to pseudo-equivalence,M(4, 2) has five models. According to the Corol-
lary 2.4, the models of M(n, 2) are obtained by adding n− 4 points to the models
of M(4, 2). We can add a finite number of points to the models of M(4, 2) (pyra-
mids and planar shapes) such that the number of distances remains constant, so
the number of constructible models for M(n, 2) is finite.

4. Pseudo-Equivalent Models for M(5, 2)

The number of edges in an M(5, 2) model is
(
5
2

)
= 10. The 2−partitions for 10

are 1 + 9, 2 + 8, 3 + 7, 4 + 6, and 5 + 5. These partitions and their corresponding
graphs have been shown in Table 3.

Table 3: 2−Partitions of 10 with corresponding graphs.

We investigate each graph to find some possible geometrical model for it. This
task needs some calculations and computations. We have done the calculations
exactly. The models (9), (12), and (14) need analytical calculations, so we de-
scribe them separately, the rest models have been shown in Table 4 with a brief
description.
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Table 4: Models for M(5, 2).
Graph Geometrical model

ACDE and BCDE are regular pyramids with common face CDE. d1 = 1,
d2 = 2

√
2/3.

ACBE is a square with side length 1, and D is a point whose distance from
vertex of square is 1. d1 = 1, d2 =

√
2.

ACDE is a regular pyramid and EDB is a equilateral triangle whose plane
is perpendicular to AC. d1 = 1, d2 =

√
6 + 2

√
6/2.

AEDC and BEDC are two pyramids with common face EDC. d1 = 1,
d2 =

√
17±

√
161/4.

A,B,C, and D are consecutive vertices of a regular pentagon and E is a
point whose distance from each vertex is equal to the diagonal of the
pentagon. d1 = 1, d2 =

√
2− 2 cos 3π/5.
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Table 4: Continued
Graph Geometrical model

ACDE is a regular pyramid and B lies on the line through D perpendicular

to 4ACE, and d(D,B) = d(A,D). d1 = 1, d2 =
√

2± 2
√

2/3.

ACD, BCD, and ECD are equilateral triangles which lie on three halfplans
with common boundary and pairwise angle equal to 2π/3. d1 = 1, d2 = 3/2.

ADBE is a square in the xy-plan, and CAD is an equilateral triangle in the
xz-plan (i.e. the square is perpendicular to the triangle). d1 = 1, d2 =

√
2.

ACDE is a regular pyramid and B is its center. d1 = 1, d2 =
√
6/4.

ABE is an equilateral triangle and CD is a line-segment perpendicular to
the plane contain ABE. d1 = 1, d2 =

√
7/12.
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Table 4: Continued
Graph Geometrical model

ABCD is a square and E is a point whose distance from each vertex is equal
to the diagonal of square. d1 = 1, d2 =

√
2.

B is the center of a sphere, and ABCD is a pyramid whose vertices lie on

the sphere. d1 = 1, d2 = 2

√
1−

(√
3±
√
35

8

)2
.

A,C,D, and E are consecutive vertices of a regular pentagon, and ADC and
ABE are equilateral triangles. d1 = 1, d2 =

√
2− 2 cos 3π/5.

ABCDE is a regular pentagon. d1 = 1, d2 =
√
2− 2 cos 3π/5.
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Description of model (9): We show that this model is constructible.

Figure 2: Graph and geometrical shape for model(9).

In Figure 2, AEC is an equilateral triangle, so one can take A = (−1/2, 0, 0),
E = (1/2, 0, 0), and C = (0,

√
3/2, 0). Since AED is an equilateral triangle, the

coordinate of D will be as D = (0,
√
3/2 cos θ,

√
3/2 sin θ) for some θ (we rotate

4AEC through θ about AE to obtain 4AED). We prove that there exist such θ
and so this model is constructible.

Let B = (x, y, z). Since d(A,B) = d(E,B), we have

(x+ 1/2)2 + y2 + z2 = (x− 1/2)2 + y2 + z2,

so x = 0. Similarly, from d(E,B) = d(B,C) we have (−1/2)2 + y2 + z2 = (y −√
3/2)2 + z2, which implies y = 1/(2

√
3). On the other hand d(A,B) = d(C,D),

so one can write z2 = 7/6− 3/2 cos θ. In a similar way, from d(B,D) = 1 we have
z2 = 2/12− 1/2cos+

√
3z sin θ. Thus

(1− 2 cos θ)2 = 3(1− cos2 θ)(7/6− 3/2 cos θ).

By taking t := cos θ, the last equation is reduced to 9t3 − 15t2 − t + 5 = 0. This
equation has a root in the interval (−1, 0) and another one in (0, 1). So, there exist
such θ, and the coordinates of B are

(
0, 1/(2

√
3), (1− 2 cos θ)/(

√
3 sin θ

)
, where θ

satisfies the following equation

9 cos3 θ − 15 cos2 θ − cos θ + 5 = 0.

The above shape has been drown by assuming, −1 < cos θ < 0. If 0 < cos θ < 1,
one can obtain another shape for this model. d1 = 1 and d2 =

√
3/2− 3/2 cos θ.

Description of model (12): We find five points which make a geometrical model
for model (12). This model has been shown in Figure 3.

LetB = (0, 0, 0), A = (1/2,
√
3/2, 0), E = (−1/2,

√
3/2, 0) and C = (0, cos θ, sin θ).

Since D has same distance from each of the other points, by taking D = (x, y, z)
a simple calculation shows that x = 0, y =

√
3/3, z2 = 5/3−

√
3 cos θ, and

√
3/3 cos θ +

√
1− cos2 θ

√
5/3−

√
3 cos θ − 1/2 = 0.
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Figure 3: Graph and geometrical shape for model(12).

Let t = cos θ, then the above equation has a root in the interval (−1, 0), i.e. there is
a π/2 < θ < π which satisfies in the above equation. d1 = 1, d2 =

√
2−
√
3 cos θ.

Description of model (14): As previous models, we make this model using
coordinate system. Figure 4 shows the geometrical shape for this model.

Figure 4: Graph and geometrical shape for model(14).

Take B = (0, 0, 0), A = (1/2,
√
3/2, 0), and E = (−1/2,

√
3/2, 0). Let D

and C be the points in the yz-plane such that D = (0,
√
3/3, t), C = (0, y, z),

and BC = 1 = CD , BD = CD. Then we have 1 = d(B,C) = y2 + z2, 1 =
(
√
3/3− y)2 + (t− z)2, 1/3+ t2 = 1/4+ (y−

√
3/2)2 + z2. By compounding these

equations one can write

12
√
3y3 − 45y2 + 8

√
3y + 8 = 0.

This equation has a root in the interval (−1, 0), so t and z are obtained as t =√
1− y2 + (y −

√
3/2)2 − 1/2 and z =

√
1− y2. d1 = 1, and d2 =

√
1/3 + t2.

By considering all above models we have proved the following theorem.

Theorem 4.1. Up to pseudo-equivalence, there are exactly seventeen models for
M(5, 2).
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5. Summary and Conclusions
According to the previous sections, up to pseudo-equivalence, the number of con-
structible models for M(3, 2), M(4, 2), and M(5, 2) is 1, 5, and 17 respectively.
Because of the variety of possible models, it is more difficult to obtain the struc-
tures of M(6, 2). We know that M(6, 2) is constructible, since M(2k + 2, 2) is
constructible. Croft [4] proved that no configuration of 7 points with 2 distinct
distances exists, that is M(7, 2) is not constructible. It follows from the Propo-
sition 2.3 that M(n, 2) is not constructible for all n > 7. So, the next step is to
complete the Table 5.

Table 5: The number of constrictible models.
Models Number of constructible models
M(3, 2) 1
M(4, 2) 5
M(5, 2) 17
M(6, 2) ?

To realize the difficulty of investigating the possible models for M(6, 2), notice
that such model has 15 edges, and 2−partitions of 15 are 1 + 14, 2 + 13, 3 + 12,
4+11, 5+10, 6+9, and 7+8. Each partition has several cases (graphs). But not
all graphs are constructible. For example the partition 1+14 is not constructible.
This argument can be continued for k = 3, 4, . . . .
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