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On Powers of Some Graph Operations

Mohamed A. Seoud and Hamdy Mohamed Hafez?

Abstract

Let G ∗H be the product ∗ of G and H. In this paper we determine the
rth power of the graph G ∗ H in terms of Gr, Hr and Gr ∗ Hr, when ∗ is
the join, Cartesian, symmetric difference, disjunctive, composition, skew and
corona product. Then we solve the equation (G ∗H)r = Gr ∗Hr. We also
compute the Wiener index and Wiener polarity index of the skew product.
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1. Introduction
The rth power of a graph G, denoted by Gr, is the graph with vertex set V (G)
where two vertices are adjacent if they are within distance r in G, i.e., the length
of the shortest path joining them is at most r. The maximum distance between
any pair of vertices in a graph G is called the diameter of G and denoted by
diam(G). Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. The
join (sum) G + H has V (G) ∪ V (H) as its vertex set and its edge set consists
of E(G) ∪ E(H) and all edges joining V (G) with V (H). The cartesian product
G×H has its vertex set V (G)×V (H) and u = (x1, y1) is adjacent to v = (x2, y2)
whenever [x1 = x2 and y1y2 ∈ E(H)] or [y1 = y2 and x1x2 ∈ E(G)]. The
symmetric difference G ⊕H has V (G) × V (H) as its vertex set and u = (x1, y1)
is adjacent to v = (x2, y2) whenever x1x2 ∈ E(G) or y1y2 ∈ E(H) but not both.
The disjunctive product G∨H has V (G)×V (H) as its vertex set and u = (x1, y1)
is adjacent to v = (x2, y2) whenever x1x2 ∈ E(G) or y1y2 ∈ E(H) or both. The
corona product G◦H is the graph obtained by taking one copy of G (which has n1

vertices) and n1 copies of H, and then joining the ith vertex of G to every vertex
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in the ith copy of H. The composition G[H] has its vertex set V (G) × V (H)
and u = (x1, y1) is adjacent to v = (x2, y2) whenever [x1x2 ∈ E(G)] or [x1 = x2

and y1y2 ∈ E(H)]. The conjunction product G ∧ H has V (G) × V (H) as its
vertex set and u = (x1, y1) is adjacent to v = (x2, y2) whenever x1x2 ∈ E(G) and
y1y2 ∈ E(H). The strong product G⊗H has V (G)× V (H) as its vertex set and
its edge set E(G⊗H) = E(G×H)∪E(G∧H). The skew product G4H, defined
in [10], has V (G)×V (H) as its vertex set and u = (x1, y1) is adjacent to v = (x2, y2)
whenever [x1 = x2 and y1y2 ∈ E(H)] or [x1x2 ∈ E(G) and y1y2 ∈ E(H)]. The
converse skew product G5H has V (G)× V (H) as its vertex set and u = (x1, y1)
is adjacent to v = (x2, y2) whenever [y1 = y2 and x1x2 ∈ E(G)] or [x1x2 ∈ E(G)
and y1y2 ∈ E(H)]. The complete graph with n vertices is denoted by Kn. For the
graphs G(V (G), E(G)) and H(V (H), E(H)), we denote the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) by G ∪H. For a graph G(V (G), E(G))
and any set of edges F ⊂ E(G), we assume G− F to be the graph obtained from
G by deleting the edges in F . We denote the distance between u and v in G
by dG(u, v). By G = H we mean that G is isomorphic to H, sometimes written
G ∼= H. A graph is null if it has no edges. Denote the degree of a vertex u in a
graph G by degG(u). For more details see [1–3]. In [7–9], Seoud proved necessity
and sufficiency conditions for:

1. G2 +H2 = (G+H)2;

2. G2 ×H2 = (G×H)2;

3. G2 ◦H2 = (G ◦H)2;

4. G2[H2] = (G[H])2;

5. G2 ∨H2 = (G ∨H)2;

6. G2 ⊕H2 = (G⊕H)2.

Here, we determine the graph (G ∗H)r in terms of Gr, Hr and Gr ∗Hr for r ≥ 2,
where the operation G ∗ H represents a product of G and H. According to the
definitions of graph products one can prove the following lemma, for more details
say [1, 12].

Lemma 1.1. Let G,H be two graphs and (u1, v1), (u2, v2) be two distinct vertices
in V (G)× V (H), where u1, u2 ∈ V (G) and v1, v2 ∈ V (H), then:

1. dG×H((u1, v1), (u2, v2)) = dG(u1, u2) + dH(v1, v2).

2. dG+H(u, v) =


0 u = v

1 uv ∈ E(G) or uv ∈ E(H) or (u ∈ V (G) and v ∈ V (H))

2 otherwise.

3. dG[H]((u1, v1), (u2, v2)) =


dG(u1, u2) u1 6= u2

dH(v1, v2) u1 = u2, degG(u1) = 0,

1 u1 = u2 , degG(u1) 6= 0 and v1v2 ∈ E(H)

2 u1 = u2 , degG(u1) 6= 0 and v1v2 /∈ E(H).
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4. dG∨H((u1, v1), (u2, v2)) =


0 u1 = u2 v1 = v2

1 u1u2 ∈ E(G) and v1v2 ∈ E(H)

2 otherwise.

5. dG⊕H((u1, v1), (u2, v2)) =


0 u1 = u2 v1 = v2

1 u1u2 ∈ E(G) and v1v2 ∈ E(H) but not both

2 otherwise.

6. dG⊗H((u1, v1), (u2, v2)) = Max{dG(u1, u2), dH(v1, v2)}.

2. Main Results
Lemma 2.1. For any two graphs G and H

1. Gr[Hr] ⊂ (G[H])r ( ⊂ means spanning subgraph of).

2. Gr +Hr ⊂ (G+H)r.

3. Gr ×Hr ⊂ (G×H)r.

4. Gr ◦Hr ⊂ (G ◦H)r.

5. Gr ∨Hr ⊂ (G ∨H)r.

6. Gr ⊕Hr ⊂ (G⊕H)r.

Proof. 1. Gr[Hr] and (G[H])r have the same set of vertices, which is V (G) ×
V (H) and (u1, u2), (v1, v2) are adjacent in Gr[Hr] means that

[
u1 = u2 and

v1 is adjacent to v2 in Hr
]
or
[
u1 is adjacent to u2 in Gr

]
. That is equivalent

to
[
u1 = u2 and dH(v1, v2) ≤ r

]
or
[
dG(u1, u2) ≤ r

]
.

First, if u1 = u2 and dH(v1, v2) ≤ r, then there exists in H the path
v1x1x2...xr−1v2 between v1 and v2 of length at most r. In G[H] we have
the path (u1, v1) (u2, x1) (u2, x2) · · · (u2, xr−1)(u2, v2) of length at most r.
Then (u1, u2) and (v1, v2) are adjacent in (G[H])r.
Second, if dG(u1, u2) ≤ r, then there exists in G the path u1y1y2...yr−1u2 be-
tween u1 and u2 of length at most r. InG[H] we have the path (u1, v1)(y1, v2)
(y2, v2) · · · (yr−1, v2)(u2, v2) of length at most r. Then (u1, v1) and (u2, v2)
are adjacent in (G[H])r.

2. Let u, v be adjacent in Gr +Hr. Note that possible cases for u, v are either[
u ∈ V (G) and v∈ V (H)

]
or
[
v ∈ V (G) and u ∈ V (H)

]
or
[
u, v ∈ V (G)

]
or[

u, v ∈ V (H)
]
. Now we discuss the possible cases as follows:

Case 1: If [u ∈ V (G) and v ∈ V (H)], then the result follows trivially.
Case 2: If [u, v ∈ V (G)], then there exists a vertex w in V (H) such that
uw, vw ∈ E (G+H). It follows that uv ∈ E((G + H)2) and (G + H)2 ⊂
(G+H)r implies that uv ∈ E((G+H)r).
Case 3: u, v ∈ V (H) analogous to case 2.

3, 4 and 5 are not difficult to be proved.
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Theorem 2.2. (G+H)r = K|V (G)|+|V (H)|.

Proof. According to Lemma 1.1, we have diam(G + H) = 2. Hence (G + H)r,
for any r ≥ 2, is complete. It is clear now that both sides in the above equation
represent a complete graph on |V (G)|+ |V (H)| vertices.

Now, we are ready to discuss the equation (G+H)r = Gr +Hr.

Corollary 2.3.
(G+H)r = Gr +Hr (1)

if and only if G and H are connected and diam(G) ≤ r and diam(H) ≤ r.

Proof. If G is not connected, then there are two vertices u and v that are not
adjacent in G and so in Gr. Hence there are two vertices u and v not adjacent
in Gr +Hr contradicts that Gr +Hr = (G+H)r = K|V (G)|+|V (H)|. Therefore G
and H must be connected. Again, if G is connected with diam(G) > r, then there
exist two vertices u and v which are not adjacent in Gr, and hence non-adjacent in
Gr +Hr a contradiction to Gr +Hr = (G+H)r. So we must have diam(G) ≤ r
and diam(H) ≤ r. Conversely, if G and H are connected and diam(G) ≤ r and
diam(H) ≤ r, then Gr+Hr = K|V (G)|+K|V (H)| = K|V (G)|+|V (H)| = (G+H)r.

Theorem 2.4. (G×H)r = Gr ×Hr ∪r−1i=1 Gi ∧Hr−1−i − ∪r−2i=1E(Gi ∧Hr−2−i).

Proof. Let (u1, v1) be adjacent to (u2, v2) in (G×H)r, then d((u1, v1), (u2, v2)) ≤ r
in G×H. Therefore we must have one of the following cases:

(1) u1 = u2 and dH(v1, v2) = dG×H((u1, v1), (u2, v2)) ≤ r, or

(2) v1 = v2 and dH(v1, v2) = dG×H((u1, v1), (u2, v2)) ≤ r, or

(3) u1u2 ∈ E(G) and dH(v1, v2) = dG×H((u1, v1), (u2, v2))− 1 ≤ r − 1, or

(5) dG(u1, u2) = 2 and dH(v1, v2) = dG×H((u1, v1), (u2, v2))− 2 ≤ r − 2, or
...

(r+1) dG(u1, u2) = b r2c and dH(v1, v2) = dG×H((u1, v1), (u2, v2))− b r2c ≤ d
r
2e.

In other words, (u1, v1)(u2, v2) ∈ E(Gr ×Hr) ∪r−1i=1 E(Gi ∧Hr−1−i). Since
E(G ∧Hr−3) is computed one time in E(G ∧Hr−2) and another time in
E(G2 ∧Hr−3) in the union ∪r−1i=1E(Gi ∧Hr−1−i), we must subtract it once. In
general any term in the union ∪r−2i=1E(Gi ∧Hr−2−i) is computed twice in
∪r−1i=1E(Gi ∧Hr−1−i), so we must subtract it once.

The following result is a consequence of Theorem 2.4.

Corollary 2.5. (G×H)r = Gr ×Hr if and only if G is null or H is null.
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Proof. Let (G×H)r = Gr×Hr and G and H be non-null, then there exist u1, u2

adjacent in G and v1, v2 adjacent in H. Hence (u1, v1) is adjacent to (u2, v1) in
G×H and (u2, v1) is adjacent to (u2, v2) in G×H, consequently (u1, v1) is adjacent
to (u2, v2) in (G × H)r, but they are not adjacent in Gr × Hr, a contradiction
to (G × H)r = Gr × Hr. Hence E(G) or E(H) must be empty. Conversely,
we note that E(Gi ∧ Hr−1−i) is empty if G is null or H is null and therefore
(G×H)r = Gr ×Hr.

Theorem 2.6. (G⊗H)r = Gr ⊗Hr.

Proof. Let (u1, v1) be adjacent to (u2, v2) in (G⊗H)r. Therefore dG⊗H((u1, v1), (u2

, v2)) ≤ r and one of the following must happen:

1. dG(u1, u2) = dG⊗H((u1, v1), (u2, v2)) ≤ r and v1 = v2, or

2. dH(v1, v2) = dG⊗H((u1, v1), (u2, v2)) ≤ r and u1 = u2, or

3. dG(u1, u2) = dH(v1, v2) = dG⊗H((u1, v1), (u2, v2)) ≤ r, or

4. 1 ≤ dG(u1, u2) < dH(v1, v2) = dG⊗H((u1, v1), (u2, v2)) ≤ r, or

5. 1 ≤ dH(v1, v2) < dG(u1, u2) = dG⊗H((u1, v1), (u2, v2)) ≤ r .

Which would imply that (u1, v1)(u2, v2) belongs to Gr ⊗Hr.

Theorem 2.7. If G and H don’t contain isolated vertices, then (G⊕H)
r

=
K|V (G)×V (H)|.

Proof. For any two vertices (u1, v1) and (u2, v2) in (G⊕H), dG⊕H((u1, v1), (u2, v2))
≤ 2, by Lemma 1.1, and (G⊕H)r is complete graph on |V (G)| × |V (H)| vertices.

Corollary 2.8. (G⊕H)r = Gr ⊕Hr has the only solutions:

(i) G = K1, H is any graph;

(ii) H = K1, G is any graph;

(iii) Trivial solution, G = nK1, H = nK1.

Proof. Let (G ⊕ H)r = Gr ⊕ Hr and G and H be non-null, then there exist
u1, u2 ∈ V (G) and v1, v2 ∈ V (H) such that u1 is adjacent to u2 in G and v1 is
adjacent to v2 in H. It follows that (u1, v1) is not adjacent to (u2, v2) in Gr⊕Hr, a
contradiction to Gr⊕Hr = (G⊕H)r = K|V (G)×V (H)|. Hence E(G) or E(H) must
be empty. Similarly: if G is null with more than one vertex and H is connected,
then there exist u1, u2 in V (G) and v1, v2 in V (H) such that v1 is adjacent to v2
in H. It follows that (u1, v1) is not adjacent to (u2, v1) in Gr⊕Hr, a contradiction
again. Conversely, if G = K1 orH = K1, then (G⊕H)r = Gr[K1] ∼= Gr ∼= Gr⊕Hr

or (G⊕H)r = K1[K|V (H)|] ∼= K|V (H)| = Gr ⊕Hr, respectively.
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Theorem 2.9. If G and H don’t contain isolated vertices, then (G ∨ H)r =
K|V (G)×V (H)|.

Proof. By Lemma 1.1 dG∨H((u1, v1), (u2, v2)) ≤ 2 and the result follows immedi-
ately.

Corollary 2.10. (G ∨H)r = Gr ∨Hr has the only solutions:

(i) G and H are connected with diam (G) ≤ r& diam(H) ≤ r;

(ii) G = K1, H is any graph;

(iii) H = K1, G is any graph;

(iv) Trivial solution, G = nK1, H = nK1.

Proof. Firstly, assume that Gr ∨Hr = (G ∨H)r.

(a) If H is connected with diam(H) > r, and G is any graph. Let G (with-
out any loss of generality) be connected. It follows that there exist paths
u1u2u3......urur+1 inH : dH(ui, ui+1) = 1, 1 ≤ i ≤ r+1, and v1v2 in G. Now
(v1, u1) is not adjacent to (v1, ur+1) in Gr∨Hr by definition, a contradiction
to Gr ∨Hr = (G ∨H)r = K|V (G)×V (H)|.

(b) If G is connected with diam(G) > r, and H is any graph, the proof proceeds
as case (a).

(c) If G is disconnected with more than one component and H is any graph, then
H or G must have at least two vertices that are adjacent (since otherwise
one gets case iv). Let u1, v1 be any two vertices in V (G) that lie in distinct
components of G and the vertices u2, v2 in V (H) that are adjacent (such
vertices must exist in eitherH or G). Then (u1, u2) is not adjacent to (v1, u2)
in Gr ∨Hr. A contradiction again to Gr ∨Hr = (G ∨H)r = K|V (G)×V (H)|.

Conversely,

(i) If G and H are connected with diam (G) ≤ r& diam(H) ≤ r, then Gr ∨Hr =
(G ∨H)r = K|V (G)×V (H)|.

(ii) If G = K1 and H is any graph, then G∨H ∼= H, (G∨H)r ∼= Hr ∼= Gr ∨Hr.

Case (iii) is similar to (ii).

Theorem 2.11. If G is connected, then (G[H])r = Gr[K|V (H)|].

Proof. According to Lemma 1.1, dG[H]((u1, v1), (u2, v2)) ≤ r is equivalent to:
[dG(u1, u2) ≤ r when u1 6= u2] or [u1 = u2 and dH(v1, v2) ≤ 2]. Which implies
that (u1, v1)(u2, v2) ∈ Gr[K|V (H)|] and the proof is complete.

Theorem 2.12. (G[H])r = Gr[Hr] has the only solutions:
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(i) G = nK1, H is any graph;

(ii) H is connected with diam(H) ≤ r and G is any graph.

Proof. Assume that (G[H])r = Gr[Hr] and G is not null, we prove that H is
connected with diam(H) ≤ r, indeed: if H is disconnected or connected with
diameter ≥ r+ 1, then there exist two vertices v1, v2 in H which are not adjacent
in Hr. Since G is not null, then there exist u1, u2 in G : dG(u1, u2) = 1. The
vertices (u1, v2) and (u1, v1) are not adjacent in Gr[Hr], but (u1, v2) and (u1, v1)
are adjacent in (G[H])r, and this is a contradiction. Assume that (G[H])r =
Gr[Hr] and G is null, we prove that H may be any graph, indeed: for any graph
H, we have (G[H])r ∼= |V (G)|Hr ∼= Gr[Hr]. Conversely, assume G,H be two
graphs satisfying the conditions in the theorem, then we have:

(i) If G = nK1 and H is any graph, then G[H] ∼= H and (G[H])r ∼= nHr ∼=
Gr[Hr].

(ii) H is connected with diam(H) ≤ r and G is any graph. It is sufficient to
prove that (G[H])r ⊆ Gr[Hr]. For this, if G is connected, then (G[H])r =
Gr[K|V (H)|] = Gr[Hr]. Note that Hr = K|V (H)| because diam(H) ≤ r.
Now, let u = (u1, v1) be adjacent to v = (u2, v2) in (G[H])r, it follows that
d(u, v) ≤ r in (G[H])r. Then there exists the path P = (u1, v1)(u3, v3) · · ·
(um, vm)(u2, v2) of length at most r in G[H]. We have the following cases:
Case 1: if u1 = u3 = u4 = · · · = um = u2, then we have d(v1, v2) ≤ r in H.
Since H is connected with diameter ≤ r, it follows that u1 = u2 and v1 is
adjacent to v2 in Hr. Then u, v are adjacent in Gr[Hr].
Case 2: if for some i = 3, 4, · · · ,m − 1, ui 6= ui+1, then the existence of the
path P implies that ui and ui+1 must be adjacent in G, of course this is
the case for u1, u3 and um, u2. Hence if u1 6= u3 6= · · · 6= um 6= u2, then
u1 is adjacent to u3, u3 is adjacent to u4,· · · , and um is adjacent to u2, i.e.
d(u1, u2) ≤ r in G, it follows that u1 is adjacent to u2 in Gr. Hence u and v
are adjacent in Gr[Hr].

Theorem 2.13. (G◦H)r = Gr ◦Hdiam(H)∪u∈V (G)E(N(u)+Hu), where N(u) =
{v ∈ V (G) : dG(u, v) ≤ r − 1} ∪ {v ∈ V (Hx) : dG(u, x) ≤ r − 2} and Hu is the
copy of H corresponding to the vertex u.

Proof. The copy of H corresponding to vertex x ∈ V (G) is denoted by Hx. Let
u, v be adjacent in E(G ◦H)r. We must have either u, v ∈ V (G) or u, v ∈ V (Hx)
or u ∈ V (G) and v ∈ V (Hx) or u ∈ V (Hx) and v ∈ V (Hy), where x 6= y. One of
the following cases must happen:

(1) If u, v ∈ V (G), then dG(u, v) ≤ r.

(2) For any two vertices u, v ∈ V (Hx), dG◦H(u, v) = 2.
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(3) If u ∈ V (G) and v ∈ V (Hx), x 6= u, then dG◦H(u, v) ≤ r − 1.

(4) If u ∈ V (Hx) and v ∈ V (Hy), where x 6= y, then dG◦H(u, v) ≤ r − 2.

In all cases, we get uv ∈ E(Gr ◦Hdiam(H)) ∪u∈V (G) E(N(u) +Hu) and the proof
is complete.

Corollary 2.14. (G ◦H)r = Gr ◦Hr if and only if G is null and each component
of H has diameter ≤ r.

Proof. Let (G ◦H)r = Gr ◦Hr, then diam(H) ≤ r and ∪u∈V (G)E(N(u) +Hu) is
empty, where N(u) = {v ∈ V (G) : dG(u, v) ≤ r − 1} ∪ {v ∈ V (Hx) : dG(u, x) ≤
r − 2} and Hu is the copy of H corresponding to the vertex u. Note that
∪u∈V (G)E(N(u) +Hu) is empty if and only if E(G) is empty.

3. Conjunction and Skew Product

We follow notions in [5]. Recall a walk between two vertices u, v is a sequence of
vertices ux1x2x3...xnv in which any two consecutive vertices are adjacent. While
a path is a walk in which all vertices are distinct and not repeated. The length
of a walk is the number of edges in it. Let dG(u, v) be the distance between
u, v in G, define d′G(u, v) to be the length of the shortest u − v walk satisfying
dG(u, v) + d′G(u, v) is odd and ∞ otherwise. We call (u1, v1) ∼ (u2, v2) whenever
dG(u1, u2) + dH(v1, v2) is even, otherwise we call (u1, v1) � (u2, v2). Distance
between (u1, v1) and (u2, v2), in the conjunction product G ∧H, is defined in [5]
as follows:

Lemma 3.1. [5]

(a)If (u1, v1) ∼ (u2, v2), then dG∧H((u1, v1), (u2, v2)) = Max{dG(u1, u2), dH(v1, v2)}.

(b) If (u1, v1) � (u2, v2), then dG∧H((u1, v1), (u2, v2))
= Min{Max{dG(u1, u2), d

′
H(v1, v2)},Max{dH(v1, v2), d

′
G(u1, u2)}}.

Lemma 3.2. If each edge in E(G) is contained in a triangle and each edge in
E(H) is contained in a triangle, then (G ∧H)r = Gr ⊗Hr.

Proof. Since each edge belongs to a triangle in G, then d′G(u1, u2) = dG(u1, u2)+1
except for dG(u1, u2) = 0, where d′G(u1, u2) = 3, the same for H. If (u1, v1) ∼
(u2, v2), then dG∧H((u1, v1), (u2, v2)) = Max

{
dG(u1, u2), dH(v1, v2)

}
= dG⊗H((u1, v1), (

u2, v2)). If (u1, v1) � (u2, v2), then dG∧H((u1, v1), (u2, v2)) = Min
{
Max

{
dG(u1, u2), dH(

v1, v2)+1
}
,Max

{
dH(v1, v2), dG(u1, u2)+1

}}
. Assume without any loss of generality that

dG(u1, u2) > dH(v1, v2) such that (dG(u1, u2), dH(v1, v2)) 6= (1, 0). Then dG(u1, u2) ≥
dH(v1, v2) + 1 and dG∧H((u1, v1), (u2, v2)) = dG(u1, u2) = Max{dG(u1, u2), dH(v1, v2)}.
If (dG(u1, u2) , dH(v1, v2)) = (1, 0), then dG∧H((u1, v1), (u2, v2)) = 2 and (u1, u2), (v1, v2)
are adjacent in (G ∧H)r for all r ≥ 2.
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Lemma 3.3. dG4H((u1, v1), (u2, v2)) = Max{dG(u1, u2), dH(v1, v2)} when (u1, u2) ∼
(v1, v2) or (u1, u2) � (v1, v2) and dG(u1, u2) < dH(v1, v2), otherwise dG4H((u1, v1), (u2,
v2)) = 1 +Max{dG(u1, u2), dH(v1, v2)} = 1 + dG(u1, u2).

Proof. Assume that (u1, u2) ∼ (v1, v2).Since G∧H ⊂ G4H, then dG4H((u1, v1), (u2,
v2)) ≤ dG∧H((u1, v1), (u2, v2)) = Max

{
dG(u1, u2), dH(v1, v2)

}
. But G 4 H ⊂ G ⊗ H,

hence dG4H( (u1, v1), (u2, v2)) ≥ dG⊗H((u1, v1), (u2, v2)) = Max
{
dG(u1, u2), dH(v1, v2)}

. If (u1, u2) � (v1, v2) and dG(u1, u2) < dH(v1, v2), then there exists a vertex (u2, x)
such that (u2, x) ∼ (u1, v1), where x ∈ V (H) satisfying dH(v1, x) = Min

{
dH(v1, y) :

y ∈ V (H) and ( u2, y) ∼ (u1, v1)
}
. Hence dG4H((u1, v1), (u2, x)) = dH(v1, x) and

dG4H((u1, v1), (u2, v2)) = dH(v1, x) + dH(x, v2) = dH(v1, v2) = Max{dG(u1, u2), dH(v1,
v2)}. By the same technique, it is not difficult to prove the other case.

Let G[r] be the graph with the same vertex set as G and two vertices u, v ∈
V (G[r]) are adjacent whenever dG(u, v) = r.

Lemma 3.4. (G4H)r = Gr−1 ∧Hr ∪G[r] ∧H [k] ∪G2b r2 c×Hr, where k ≤ r and
k + r is even.

Proof. For any edge (u1, v1)(u2, v2) ∈ E(Gr−1 ∧Hr)∪E(G[r] ∧H [k])∪E(G2b r2 c×
Hr), where k ≤ r and k+r is even, by Lemma 3.3 dG4H((u1, v1), (u2, v2)) ≤ r and
(u1, v1)(u2, v2) ∈ E((G 4 H)r). Conversely, let (u1, v1)(u2, v2) ∈ E((G 4 H)r),
then dG4H((u1, v1), (u2, v2)) ≤ r and we have the following cases:

(1) When u1 = u2, then 1 ≤ dH(v1, v2) ≤ r.

(2) When v1 = v2, then 1 ≤ dG(u1, u2) ≤ r − 1.

(3) When 1 ≤ dG(u1, u2) ≤ 2b r2c, then 1 ≤ dH(v1, v2) ≤ r.

(4) When dG(u1, u2) = r, then dH(v1, v2) = k, where r ≥ k ∈ Z+ and r + k is
even.

In other words (u1, v1)(u2, v2) ∈ E(G2b r2 c×Hr) or (u1, v1)(u2, v2) ∈ E(Gr−1∧Hr)
or (u1, v1)(u2, v2) ∈ ∪E(G[r] ∧H [k]), where k ≤ r and k + r is even.

Following the same technique in Corollary 2.5, it is not difficult to prove the
following corollary.

Corollary 3.5. (G4H)r = Gr 4Hr iff G is null or H is null.

From the definitions of skew product and converse skew product, we conclude
that:

Theorem 3.6. (G5H)r = Hr−1 ∧Gr ∪H [r] ∧G[k] ∪H2b r2 c ×Gr, where k ≤ r
and k + r is even.

Corollary 3.7. (G5H)r = Gr 5Hr iff G is null or H is null.
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4. Wiener Index and Wiener Polarity Index of the
Skew Product of Graphs

In this section, we compute the Wiener index and the Wiener polarity index of
G4H and G5H. The Wiener index [11] defined as the sum of distances between
all vertex pairs in a connected graph. While the Wiener polarity index [11] is
defined to be the number of unordered pairs of vertices {u, v} of V (G) such that
dG(u, v) = 3. Let Wk(G) be the number of unordered pairs of vertices {u, v}
of V (G) such that dG(u, v) = k. Then the Wiener polarity index of a graph G,
denoted by WP (G) = W3(G) and the Wiener index W (G) =

∑
k≥1 kWk(G). The

Wiener index of cartesian product, join, composition and corna is computed in [12].
In [6], the Wiener index of strong product is computed. The Wiener polarity index
of cartesian product, composition, strong product is computed in [4].

Lemma 4.1. Let G and H be two connected graphs, then WP (G4H) = Wp(H)
[

|V (G)|+ 2|E(G)|+ 2W2(G) + 2Wp(G)
]
+ 2|E(H)|

[
Wp(G) +W2(G)

]
.

Proof. According to Lemma 3.3, two vertices (u1, v1), (u2, v2) are at distance 3 in
G4H whenever: (dG(u1, u2), dH(v1, v2))) = (0, 3), (1, 3), (2, 3), (3, 3), (3, 1), (2, 1).
We distinguish between the following cases:
Case 1: when (dG(u1, u2), dH(v1, v2)) = (0, 3), then WP (G4H) = Wp(H)|V (G)|.
Case 2: when (dG(u1, u2), dH(v1, v2)) = (1, 3), thenWP (G4H) = 2Wp(H)|E(G)|.
Case 3: when (dG(u1, u2), dH(v1, v2)) = (2, 3), thenWP (G4H) = 2Wp(H)W2(G).
Case 4: when (dG(u1, u2), dH(v1, v2)) = (3, 3), thenWP (G4H) = 2Wp(H)Wp(G).
Case 5: when (dG(u1, u2), dH(v1, v2)) = (3, 1), thenWP (G4H) = 2Wp(G)|E(H)|.
Case 6: when (dG(u1, u2), dH(v1, v2)) = (2, 1), then WP (G4H) = 2W2(G)|E(H)|.
Therefore WP (G 4 H) = WP (H)

[
|V (G)| + 2|E(G)| + 2W2(G) + 2WP (G)

]
+

2|E(H)|
[
WP (G) +W2(G)

]
.

Lemma 4.2. Let G and H be two connected graphs, then WP (G5H) = Wp(G)
[

|V (H)|+ 2|E(H)|+ 2W2(H) + 2Wp(H)
]
+ 2|E(G)|

[
Wp(H) +W2(H)

]
.

Theorem 4.3. Let G and H be connected graphs, then W (G4H) = n2
1W (H) +

n2[W (G)+
∑i=bD2 c

i=1 W2i−1(G)]+2
∑i=D

i=2 Wi(G)[
∑j=i

j=2[iWj−1(H)+(i−1)Wj−2(H)],
where |V (G)| = n1, |V (H)| = n2 and D = diam(G 4 H) = Max{diam(G) +
1, diam(H)}.

Proof. Let G and H be connected graphs with |V (G)| = n1, |V (H)| = n2, then
G4H is connected. We note that when k is even, then

Wk(G4H) = Wk(H)
[
n1+2

i=k∑
i=1

Wi(G)
]
+(Wk(G)+Wk−1(G))

[
n2+2

i= k−2
2∑

i=1

W2i(H)
]
,

for k > 2 and W2(G4H) = W2(H)
[
n1 + 2

∑i=2
i=1 Wi(G)

]
+ n2

[
W2(G) +W1(G)

]
.

When k is odd, Wk(G4H) = Wk(H)
[
n1+2

∑i=k
i=1 Wi(G)

]
+2
[
Wk(G)+Wk−1(G)

]
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∑i= k−1
2

i=1 W2i−1(H), for k ≥ 3 and W1(G 4 H) = W1(H)
[
n1 + 2W1(G)

]
. Let

D = Max{diam(G) + 1, diam(H)}. Assume without loss of generality that D is
even, then

W =W1(H)
[
n1 + 2W1(G)

]
+

2

[
W2(H)

[
n1 + 2

i=2∑
i=1

Wi(G)
]
+ n2

[
W2(G) +W1(G)

]]
+

3

[
W3(H)

[
n1 + 2

i=3∑
i=1

Wi(G)
]
+ 2
[
W3(G) +W2(G)

]
W1(H)

]
+

4

[
W4(H)

[
n1 + 2

i=4∑
i=1

Wi(G)
]
+ (W4(G) +W3(G))

[
n2 + 2W2(H)

]]
+

...

D

[
WD(H)

[
n1 + 2

i=D∑
i=1

Wi(G)
]
+ (WD(G)+

WD−1(G))
[
n2 + 2

i=D−2
2∑

i=3

W2i(H)
]]
.

Which would imply that

W =W (H)
[
n1 + 2

i=D∑
i=1

Wi(G)
]
+ 2n2

[ i=D∑
i=1

d i
2
eWi(G)

]
+

2

i=D∑
i=2

Wi(G)

[ j=i∑
j=2

[
iWj−1(H) + (i− 1)Wj−2(H)

]]
.

=n2
1W (H) + 2n2

[ i=D∑
i=1

d i
2
eWi(G)

]
+

2

i=D∑
i=2

Wi(G)

[ j=i∑
j=2

[
iWj−1(H) + (i− 1)Wj−2(H)

]]
.

=n2
1W (H) + n2

[
W (G) +

i=bD2 c∑
i=1

W2i−1(G)
]
+

2

i=D∑
i=2

Wi(G)

[ j=i∑
j=2

[
iWj−1(H) + (i− 1)Wj−2(H)

]]
.
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Theorem 4.4. Let G and H be connected graphs, then

W (G5H) = n2
2W (G) + n1

[
W (H) +

i=bD2 c∑
i=1

W2i−1(H)

]
+

2

i=D∑
i=2

Wi(H)

[ j=i∑
j=2

[
iWj−1(G) + (i− 1)Wj−2(G)

]]
,

where |V (G)| = n1, |V (H)| = n2 and D = diam(G5H) = Max{diam(G)(H)+1}.
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