On Powers of Some Graph Operations

Mohamed A. Seoud and Hamdy Mohamed Hafez*

Abstract

Let G * H be the product * of G and H. In this paper we determine the r^{th} power of the graph G * H in terms of G^r , H^r and $G^r * H^r$, when * is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G * H)^r = G^r * H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.

Keywords: Graph product, power graphs, graph indices.

2010 Mathematics Subject Classification: 05C12, 05C76.

How to cite this article M. A. Seoud, H. M. Hafez, On powers of some graph operations, Math. Interdisc. Res. 3 (2018) 31-43.

1. Introduction

The r^{th} power of a graph G, denoted by G^r , is the graph with vertex set V(G)where two vertices are adjacent if they are within distance r in G, i.e., the length of the shortest path joining them is at most r. The maximum distance between any pair of vertices in a graph G is called the diameter of G and denoted by diam(G). Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. The join (sum) G + H has $V(G) \cup V(H)$ as its vertex set and its edge set consists of $E(G) \cup E(H)$ and all edges joining V(G) with V(H). The cartesian product $G \times H$ has its vertex set $V(G) \times V(H)$ and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $[x_1 = x_2 \text{ and } y_1y_2 \in E(H)]$ or $[y_1 = y_2 \text{ and } x_1x_2 \in E(G)]$. The symmetric difference $G \oplus H$ has $V(G) \times V(H)$ as its vertex set and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $x_1 x_2 \in E(G)$ or $y_1 y_2 \in E(H)$ but not both. The disjunctive product $G \vee H$ has $V(G) \times V(H)$ as its vertex set and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $x_1 x_2 \in E(G)$ or $y_1 y_2 \in E(H)$ or both. The corona product $G \circ H$ is the graph obtained by taking one copy of G (which has n_1 vertices) and n_1 copies of H, and then joining the i^{th} vertex of G to every vertex

©2018 University of Kashan

E This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: hha00@fayoum.edu.eg) Academic Editor: Yongtang Shi Received 11 May 2017, Accepted 14 January 2018

DOI: 10.22052/mir.2018.85618.1062

in the i^{th} copy of H. The composition G[H] has its vertex set $V(G) \times V(H)$ and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $[x_1 x_2 \in E(G)]$ or $[x_1 = x_2]$ and $y_1y_2 \in E(H)$. The conjunction product $G \wedge H$ has $V(G) \times V(H)$ as its vertex set and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $x_1 x_2 \in E(G)$ and $y_1y_2 \in E(H)$. The strong product $G \otimes H$ has $V(G) \times V(H)$ as its vertex set and its edge set $E(G \otimes H) = E(G \times H) \cup E(G \wedge H)$. The skew product $G \triangle H$, defined in [10], has $V(G) \times V(H)$ as its vertex set and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $[x_1 = x_2 \text{ and } y_1y_2 \in E(H)]$ or $[x_1x_2 \in E(G) \text{ and } y_1y_2 \in E(H)]$. The converse skew product $G \bigtriangledown H$ has $V(G) \times V(H)$ as its vertex set and $u = (x_1, y_1)$ is adjacent to $v = (x_2, y_2)$ whenever $[y_1 = y_2 \text{ and } x_1 x_2 \in E(G)]$ or $[x_1 x_2 \in E(G)]$ and $y_1y_2 \in E(H)$]. The complete graph with n vertices is denoted by K_n . For the graphs G(V(G), E(G)) and H(V(H), E(H)), we denote the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$ by $G \cup H$. For a graph G(V(G), E(G))and any set of edges $F \subset E(G)$, we assume G - F to be the graph obtained from G by deleting the edges in F. We denote the distance between u and v in G by $d_G(u, v)$. By G = H we mean that G is isomorphic to H, sometimes written $G \cong H$. A graph is null if it has no edges. Denote the degree of a vertex u in a graph G by $deg_G(u)$. For more details see [1–3]. In [7–9], Seoud proved necessity and sufficiency conditions for:

- 1. $G^2 + H^2 = (G + H)^2;$
- 2. $G^2 \times H^2 = (G \times H)^2;$
- 3. $G^2 \circ H^2 = (G \circ H)^2;$
- 4. $G^{2}[H^{2}] = (G[H])^{2};$
- 5. $G^2 \vee H^2 = (G \vee H)^2;$
- 6. $G^2 \oplus H^2 = (G \oplus H)^2$.

Here, we determine the graph $(G * H)^r$ in terms of G^r , H^r and $G^r * H^r$ for $r \ge 2$, where the operation G * H represents a product of G and H. According to the definitions of graph products one can prove the following lemma, for more details say [1,12].

Lemma 1.1. Let G, H be two graphs and $(u_1, v_1), (u_2, v_2)$ be two distinct vertices in $V(G) \times V(H)$, where $u_1, u_2 \in V(G)$ and $v_1, v_2 \in V(H)$, then:

1.
$$d_{G \times H}((u_1, v_1), (u_2, v_2)) = d_G(u_1, u_2) + d_H(v_1, v_2).$$

2. $d_{G+H}(u, v) = \begin{cases} 0 & u = v \\ 1 & uv \in E(G) \text{ or } uv \in E(H) \text{ or } (u \in V(G) \text{ and } v \in V(H)) \\ 2 & otherwise. \end{cases}$

$$\begin{cases} d_G(u_1, u_2) & u_1 \neq u_2 \end{cases}$$

3.
$$d_{G[H]}((u_1, v_1), (u_2, v_2)) = \begin{cases} u_G(u_1, u_2) & u_1 \neq u_2 \\ d_H(v_1, v_2) & u_1 = u_2, \deg_G(u_1) = 0, \\ 1 & u_1 = u_2, \deg_G(u_1) \neq 0 \text{ and } v_1 v_2 \in E(H), \\ 2 & u_1 = u_2, \deg_G(u_1) \neq 0 \text{ and } v_1 v_2 \notin E(H). \end{cases}$$

$$4. \ d_{G \lor H}((u_1, v_1), (u_2, v_2)) = \begin{cases} 0 & u_1 = u_2 & v_1 = v_2 \\ 1 & u_1 u_2 \in E(G) & and & v_1 v_2 \in E(H) \\ 2 & otherwise. \end{cases}$$

$$5. \ d_{G \oplus H}((u_1, v_1), (u_2, v_2)) = \begin{cases} 0 & u_1 = u_2 & v_1 = v_2 \\ 1 & u_1 u_2 \in E(G) & and & v_1 v_2 \in E(H) & but & not & both \\ 2 & otherwise. \end{cases}$$

$$6. \ d_{G \otimes H}((u_1, v_1), (u_2, v_2)) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}.$$

2. Main Results

Lemma 2.1. For any two graphs G and H

- 1. $G^{r}[H^{r}] \subset (G[H])^{r}$ (\subset means spanning subgraph of).
- 2. $G^r + H^r \subset (G + H)^r$.
- 3. $G^r \times H^r \subset (G \times H)^r$.
- 4. $G^r \circ H^r \subset (G \circ H)^r$.
- 5. $G^r \vee H^r \subset (G \vee H)^r$.
- 6. $G^r \oplus H^r \subset (G \oplus H)^r$.
- *Proof.* 1. $G^r[H^r]$ and $(G[H])^r$ have the same set of vertices, which is $V(G) \times V(H)$ and $(u_1, u_2), (v_1, v_2)$ are adjacent in $G^r[H^r]$ means that $[u_1 = u_2$ and v_1 is adjacent to v_2 in $H^r]$ or $[u_1$ is adjacent to u_2 in $G^r]$. That is equivalent to $[u_1 = u_2$ and $d_H(v_1, v_2) \leq r]$ or $[d_G(u_1, u_2) \leq r]$.

First, if $u_1 = u_2$ and $d_H(v_1, v_2) \leq r$, then there exists in H the path $v_1x_1x_2...x_{r-1}v_2$ between v_1 and v_2 of length at most r. In G[H] we have the path $(u_1, v_1) (u_2, x_1) (u_2, x_2) \cdots (u_2, x_{r-1})(u_2, v_2)$ of length at most r. Then (u_1, u_2) and (v_1, v_2) are adjacent in $(G[H])^r$.

Second, if $d_G(u_1, u_2) \leq r$, then there exists in G the path $u_1y_1y_2...y_{r-1}u_2$ between u_1 and u_2 of length at most r. In G[H] we have the path $(u_1, v_1)(y_1, v_2)$ $(y_2, v_2) \cdots (y_{r-1}, v_2)(u_2, v_2)$ of length at most r. Then (u_1, v_1) and (u_2, v_2) are adjacent in $(G[H])^r$.

2. Let u, v be adjacent in $G^r + H^r$. Note that possible cases for u, v are either $[u \in V(G) \text{ and } v \in V(H)]$ or $[v \in V(G) \text{ and } u \in V(H)]$ or $[u, v \in V(G)]$ or $[u, v \in V(H)]$. Now we discuss the possible cases as follows: Case 1: If $[u \in V(G) \text{ and } v \in V(H)]$, then the result follows trivially. Case 2: If $[u, v \in V(G)]$, then there exists a vertex w in V(H) such that $uw, vw \in E(G + H)$. It follows that $uv \in E((G + H)^2)$ and $(G + H)^2 \subset (G + H)^r$ implies that $uv \in E((G + H)^r)$. Case 3: $u, v \in V(H)$ analogous to case 2.

3, 4 and 5 are not difficult to be proved.

Theorem 2.2. $(G+H)^r = K_{|V(G)|+|V(H)|}$.

Proof. According to Lemma 1.1, we have diam(G + H) = 2. Hence $(G + H)^r$, for any $r \ge 2$, is complete. It is clear now that both sides in the above equation represent a complete graph on |V(G)| + |V(H)| vertices.

Now, we are ready to discuss the equation $(G + H)^r = G^r + H^r$.

Corollary 2.3.

$$(G+H)^r = G^r + H^r \tag{1}$$

if and only if G and H are connected and $diam(G) \leq r$ and $diam(H) \leq r$.

Proof. If G is not connected, then there are two vertices u and v that are not adjacent in G and so in G^r . Hence there are two vertices u and v not adjacent in $G^r + H^r$ contradicts that $G^r + H^r = (G + H)^r = K_{|V(G)|+|V(H)|}$. Therefore G and H must be connected. Again, if G is connected with diam(G) > r, then there exist two vertices u and v which are not adjacent in G^r , and hence non-adjacent in $G^r + H^r$ a contradiction to $G^r + H^r = (G + H)^r$. So we must have $diam(G) \le r$ and $diam(H) \le r$. Conversely, if G and H are connected and $diam(G) \le r$ and $diam(H) \le r$, then $G^r + H^r = K_{|V(G)|} + K_{|V(H)|} = K_{|V(G)|+|V(H)|} = (G+H)^r$. \Box

Theorem 2.4. $(G \times H)^r = G^r \times H^r \cup_{i=1}^{r-1} G^i \wedge H^{r-1-i} - \cup_{i=1}^{r-2} E(G^i \wedge H^{r-2-i}).$

Proof. Let (u_1, v_1) be adjacent to (u_2, v_2) in $(G \times H)^r$, then $d((u_1, v_1), (u_2, v_2)) \leq r$ in $G \times H$. Therefore we must have one of the following cases:

- (1) $u_1 = u_2$ and $d_H(v_1, v_2) = d_{G \times H}((u_1, v_1), (u_2, v_2)) \leq r$, or
- (2) $v_1 = v_2$ and $d_H(v_1, v_2) = d_{G \times H}((u_1, v_1), (u_2, v_2)) \leq r$, or
- (3) $u_1u_2 \in E(G)$ and $d_H(v_1, v_2) = d_{G \times H}((u_1, v_1), (u_2, v_2)) 1 \le r 1$, or
- (5) $d_G(u_1, u_2) = 2$ and $d_H(v_1, v_2) = d_{G \times H}((u_1, v_1), (u_2, v_2)) 2 \le r 2$, or :

(r+1)
$$d_G(u_1, u_2) = \lfloor \frac{r}{2} \rfloor$$
 and $d_H(v_1, v_2) = d_{G \times H}((u_1, v_1), (u_2, v_2)) - \lfloor \frac{r}{2} \rfloor \leq \lceil \frac{r}{2} \rceil$.

In other words, $(u_1, v_1)(u_2, v_2) \in E(G^r \times H^r) \cup_{i=1}^{r-1} E(G^i \wedge H^{r-1-i})$. Since $E(G \wedge H^{r-3})$ is computed one time in $E(G \wedge H^{r-2})$ and another time in $E(G^2 \wedge H^{r-3})$ in the union $\cup_{i=1}^{r-1} E(G^i \wedge H^{r-1-i})$, we must subtract it once. In general any term in the union $\cup_{i=1}^{r-2} E(G^i \wedge H^{r-2-i})$ is computed twice in $\cup_{i=1}^{r-1} E(G^i \wedge H^{r-1-i})$, so we must subtract it once.

The following result is a consequence of Theorem 2.4.

Corollary 2.5. $(G \times H)^r = G^r \times H^r$ if and only if G is null or H is null.

Proof. Let $(G \times H)^r = G^r \times H^r$ and G and H be non-null, then there exist u_1, u_2 adjacent in G and v_1, v_2 adjacent in H. Hence (u_1, v_1) is adjacent to (u_2, v_1) in $G \times H$ and (u_2, v_1) is adjacent to (u_2, v_2) in $G \times H$, consequently (u_1, v_1) is adjacent to (u_2, v_2) in $(G \times H)^r$, but they are not adjacent in $G^r \times H^r$, a contradiction to $(G \times H)^r = G^r \times H^r$. Hence E(G) or E(H) must be empty. Conversely, we note that $E(G^i \wedge H^{r-1-i})$ is empty if G is null or H is null and therefore $(G \times H)^r = G^r \times H^r$.

Theorem 2.6. $(G \otimes H)^r = G^r \otimes H^r$.

Proof. Let (u_1, v_1) be adjacent to (u_2, v_2) in $(G \otimes H)^r$. Therefore $d_{G \otimes H}((u_1, v_1), (u_2, v_2)) \leq r$ and one of the following must happen:

- 1. $d_G(u_1, u_2) = d_{G \otimes H}((u_1, v_1), (u_2, v_2)) \le r$ and $v_1 = v_2$, or
- 2. $d_H(v_1, v_2) = d_{G \otimes H}((u_1, v_1), (u_2, v_2)) \leq r$ and $u_1 = u_2$, or
- 3. $d_G(u_1, u_2) = d_H(v_1, v_2) = d_{G \otimes H}((u_1, v_1), (u_2, v_2)) \le r$, or
- 4. $1 \leq d_G(u_1, u_2) < d_H(v_1, v_2) = d_{G \otimes H}((u_1, v_1), (u_2, v_2)) \leq r$, or
- 5. $1 \le d_H(v_1, v_2) < d_G(u_1, u_2) = d_{G \otimes H}((u_1, v_1), (u_2, v_2)) \le r$.

Which would imply that $(u_1, v_1)(u_2, v_2)$ belongs to $G^r \otimes H^r$.

Theorem 2.7. If G and H don't contain isolated vertices, then $(G \oplus H)^r = K_{|V(G) \times V(H)|}$.

Proof. For any two vertices (u_1, v_1) and (u_2, v_2) in $(G \oplus H)$, $d_{G \oplus H}((u_1, v_1), (u_2, v_2)) \le 2$, by Lemma 1.1, and $(G \oplus H)^r$ is complete graph on $|V(G)| \times |V(H)|$ vertices.

Corollary 2.8. $(G \oplus H)^r = G^r \oplus H^r$ has the only solutions:

- (i) $G = K_1$, H is any graph;
- (ii) $H = K_1$, G is any graph;
- (iii) Trivial solution, $G = nK_1, H = nK_1$.

Proof. Let $(G \oplus H)^r = G^r \oplus H^r$ and G and H be non-null, then there exist $u_1, u_2 \in V(G)$ and $v_1, v_2 \in V(H)$ such that u_1 is adjacent to u_2 in G and v_1 is adjacent to v_2 in H. It follows that (u_1, v_1) is not adjacent to (u_2, v_2) in $G^r \oplus H^r$, a contradiction to $G^r \oplus H^r = (G \oplus H)^r = K_{|V(G) \times V(H)|}$. Hence E(G) or E(H) must be empty. Similarly: if G is null with more than one vertex and H is connected, then there exist u_1, u_2 in V(G) and v_1, v_2 in V(H) such that v_1 is adjacent to v_2 in H. It follows that (u_1, v_1) is not adjacent to (u_2, v_1) in $G^r \oplus H^r$, a contradiction again. Conversely, if $G = K_1$ or $H = K_1$, then $(G \oplus H)^r = G^r[K_1] \cong G^r \cong G^r \oplus H^r$ or $(G \oplus H)^r = K_1[K_{|V(H)|}] \cong K_{|V(H)|} = G^r \oplus H^r$, respectively. □

Theorem 2.9. If G and H don't contain isolated vertices, then $(G \vee H)^r = K_{|V(G) \times V(H)|}$.

Proof. By Lemma 1.1 $d_{G \vee H}((u_1, v_1), (u_2, v_2)) \leq 2$ and the result follows immediately.

Corollary 2.10. $(G \lor H)^r = G^r \lor H^r$ has the only solutions:

- (i) G and H are connected with diam $(G) \leq r \& diam(H) \leq r$;
- (ii) $G = K_1$, H is any graph;
- (iii) $H = K_1$, G is any graph;
- (iv) Trivial solution, $G = nK_1, H = nK_1$.

Proof. Firstly, assume that $G^r \vee H^r = (G \vee H)^r$.

- (a) If H is connected with diam(H) > r, and G is any graph. Let G (without any loss of generality) be connected. It follows that there exist paths $u_1u_2u_3....u_ru_{r+1}$ in $H: d_H(u_i, u_{i+1}) = 1, 1 \le i \le r+1$, and v_1v_2 in G. Now (v_1, u_1) is not adjacent to (v_1, u_{r+1}) in $G^r \vee H^r$ by definition, a contradiction to $G^r \vee H^r = (G \vee H)^r = K_{|V(G) \times V(H)|}$.
- (b) If G is connected with diam(G) > r, and H is any graph, the proof proceeds as case (a).
- (c) If G is disconnected with more than one component and H is any graph, then H or G must have at least two vertices that are adjacent (since otherwise one gets case iv). Let u_1, v_1 be any two vertices in V(G) that lie in distinct components of G and the vertices u_2, v_2 in V(H) that are adjacent (such vertices must exist in either H or G). Then (u_1, u_2) is not adjacent to (v_1, u_2) in $G^r \vee H^r$. A contradiction again to $G^r \vee H^r = (G \vee H)^r = K_{|V(G) \times V(H)|}$.

Conversely,

(i) If G and H are connected with $diam(G) \le r \& diam(H) \le r$, then $G^r \lor H^r = (G \lor H)^r = K_{|V(G) \lor V(H)|}$.

(ii) If $G = K_1$ and H is any graph, then $G \vee H \cong H$, $(G \vee H)^r \cong H^r \cong G^r \vee H^r$.

Case (iii) is similar to (ii).

Theorem 2.11. If G is connected, then $(G[H])^r = G^r[K_{|V(H)|}]$.

Proof. According to Lemma 1.1, $d_{G[H]}((u_1, v_1), (u_2, v_2)) \leq r$ is equivalent to: $[d_G(u_1, u_2) \leq r$ when $u_1 \neq u_2]$ or $[u_1 = u_2$ and $d_H(v_1, v_2) \leq 2]$. Which implies that $(u_1, v_1)(u_2, v_2) \in G^r[K_{|V(H)|}]$ and the proof is complete. \Box

Theorem 2.12. $(G[H])^r = G^r[H^r]$ has the only solutions:

- (i) $G = nK_1$, H is any graph;
- (ii) H is connected with $diam(H) \leq r$ and G is any graph.

Proof. Assume that $(G[H])^r = G^r[H^r]$ and G is not null, we prove that H is connected with $diam(H) \leq r$, indeed: if H is disconnected or connected with diameter $\geq r+1$, then there exist two vertices v_1, v_2 in H which are not adjacent in H^r . Since G is not null, then there exist u_1, u_2 in $G : d_G(u_1, u_2) = 1$. The vertices (u_1, v_2) and (u_1, v_1) are not adjacent in $G^r[H^r]$, but (u_1, v_2) and (u_1, v_1) are adjacent in $(G[H])^r$, and this is a contradiction. Assume that $(G[H])^r =$ $G^r[H^r]$ and G is null, we prove that H may be any graph, indeed: for any graph H, we have $(G[H])^r \cong |V(G)|H^r \cong G^r[H^r]$. Conversely, assume G, H be two graphs satisfying the conditions in the theorem, then we have:

- (i) If $G = nK_1$ and H is any graph, then $G[H] \cong H$ and $(G[H])^r \cong nH^r \cong G^r[H^r]$.
- (ii) *H* is connected with $diam(H) \leq r$ and *G* is any graph. It is sufficient to prove that $(G[H])^r \subseteq G^r[H^r]$. For this, if *G* is connected, then $(G[H])^r = G^r[K_{|V(H)|}] = G^r[H^r]$. Note that $H^r = K_{|V(H)|}$ because $diam(H) \leq r$. Now, let $u = (u_1, v_1)$ be adjacent to $v = (u_2, v_2)$ in $(G[H])^r$, it follows that $d(u, v) \leq r$ in $(G[H])^r$. Then there exists the path $P = (u_1, v_1)(u_3, v_3) \cdots (u_m, v_m)(u_2, v_2)$ of length at most *r* in G[H]. We have the following cases: Case 1: if $u_1 = u_3 = u_4 = \cdots = u_m = u_2$, then we have $d(v_1, v_2) \leq r$ in *H*. Since *H* is connected with diameter $\leq r$, it follows that $u_1 = u_2$ and v_1 is adjacent to v_2 in H^r . Then u, v are adjacent in $G^r[H^r]$.

Case 2: if for some $i = 3, 4, \dots, m-1, u_i \neq u_{i+1}$, then the existence of the path P implies that u_i and u_{i+1} must be adjacent in G, of course this is the case for u_1, u_3 and u_m, u_2 . Hence if $u_1 \neq u_3 \neq \dots \neq u_m \neq u_2$, then u_1 is adjacent to u_3, u_3 is adjacent to u_4, \dots , and u_m is adjacent to u_2 , i.e. $d(u_1, u_2) \leq r$ in G, it follows that u_1 is adjacent to u_2 in G^r . Hence u and v are adjacent in $G^r[H^r]$.

Theorem 2.13. $(G \circ H)^r = G^r \circ H^{diam(H)} \cup_{u \in V(G)} E(N(u) + H_u)$, where $N(u) = \{v \in V(G) : d_G(u, v) \leq r - 1\} \cup \{v \in V(H_x) : d_G(u, x) \leq r - 2\}$ and H_u is the copy of H corresponding to the vertex u.

Proof. The copy of H corresponding to vertex $x \in V(G)$ is denoted by H_x . Let u, v be adjacent in $E(G \circ H)^r$. We must have either $u, v \in V(G)$ or $u, v \in V(H_x)$ or $u \in V(G)$ and $v \in V(H_x)$ or $u \in V(H_x)$ and $v \in V(H_y)$, where $x \neq y$. One of the following cases must happen:

- (1) If $u, v \in V(G)$, then $d_G(u, v) \leq r$.
- (2) For any two vertices $u, v \in V(H_x), d_{G \circ H}(u, v) = 2$.

- (3) If $u \in V(G)$ and $v \in V(H_x), x \neq u$, then $d_{G \circ H}(u, v) \leq r 1$.
- (4) If $u \in V(H_x)$ and $v \in V(H_y)$, where $x \neq y$, then $d_{G \circ H}(u, v) \leq r 2$.

In all cases, we get $uv \in E(G^r \circ H^{diam(H)}) \cup_{u \in V(G)} E(N(u) + H_u)$ and the proof is complete. \Box

Corollary 2.14. $(G \circ H)^r = G^r \circ H^r$ if and only if G is null and each component of H has diameter $\leq r$.

Proof. Let $(G \circ H)^r = G^r \circ H^r$, then $diam(H) \leq r$ and $\bigcup_{u \in V(G)} E(N(u) + H_u)$ is empty, where $N(u) = \{v \in V(G) : d_G(u, v) \leq r - 1\} \cup \{v \in V(H_x) : d_G(u, x) \leq r - 2\}$ and H_u is the copy of H corresponding to the vertex u. Note that $\bigcup_{u \in V(G)} E(N(u) + H_u)$ is empty if and only if E(G) is empty. \Box

3. Conjunction and Skew Product

We follow notions in [5]. Recall a walk between two vertices u, v is a sequence of vertices $ux_1x_2x_3...x_nv$ in which any two consecutive vertices are adjacent. While a path is a walk in which all vertices are distinct and not repeated. The length of a walk is the number of edges in it. Let $d_G(u, v)$ be the distance between u, v in G, define $d'_G(u, v)$ to be the length of the shortest u - v walk satisfying $d_G(u, v) + d'_G(u, v)$ is odd and ∞ otherwise. We call $(u_1, v_1) \sim (u_2, v_2)$ whenever $d_G(u_1, u_2) + d_H(v_1, v_2)$ is even, otherwise we call $(u_1, v_1) \nsim (u_2, v_2)$. Distance between (u_1, v_1) and (u_2, v_2) , in the conjunction product $G \wedge H$, is defined in [5] as follows:

Lemma 3.1. [5]

- $(a) If (u_1, v_1) \sim (u_2, v_2), then \ d_{G \wedge H}((u_1, v_1), (u_2, v_2)) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}.$
- (b) If $(u_1, v_1) \nsim (u_2, v_2)$, then $d_{G \land H}((u_1, v_1), (u_2, v_2))$ = $Min\{Max\{d_G(u_1, u_2), d'_H(v_1, v_2)\}, Max\{d_H(v_1, v_2), d'_G(u_1, u_2)\}\}.$

Lemma 3.2. If each edge in E(G) is contained in a triangle and each edge in E(H) is contained in a triangle, then $(G \wedge H)^r = G^r \otimes H^r$.

Proof. Since each edge belongs to a triangle in *G*, then $d'_G(u_1, u_2) = d_G(u_1, u_2) + 1$ except for $d_G(u_1, u_2) = 0$, where $d'_G(u_1, u_2) = 3$, the same for *H*. If $(u_1, v_1) \sim (u_2, v_2)$, then $d_{G \land H}((u_1, v_1), (u_2, v_2)) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\} = d_{G \otimes H}((u_1, v_1), (u_2, v_2))$. If $(u_1, v_1) \sim (u_2, v_2)$, then $d_{G \land H}((u_1, v_1), (u_2, v_2)) = Min\{Max\{d_G(u_1, u_2), d_H(v_1, v_2), d_G(u_1, u_2) + 1\}\}$. Assume without any loss of generality that $d_G(u_1, u_2) > d_H(v_1, v_2)$ such that $(d_G(u_1, u_2), d_H(v_1, v_2)) \neq (1, 0)$. Then $d_G(u_1, u_2) \geq d_H(v_1, v_2) + 1$ and $d_{G \land H}((u_1, v_1), (u_2, v_2)) = d_G(u_1, u_2) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}$. If $(d_G(u_1, u_2), d_H(v_1, v_2)) = (1, 0)$, then $d_{G \land H}((u_1, v_1), (u_2, v_2)) = 2$ and $(u_1, u_2), (v_1, v_2)$ are adjacent in $(G \land H)^r$ for all $r \geq 2$. □ **Lemma 3.3.** $d_{G \triangle H}((u_1, v_1), (u_2, v_2)) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}$ when $(u_1, u_2) \sim (v_1, v_2)$ or $(u_1, u_2) \nsim (v_1, v_2)$ and $d_G(u_1, u_2) < d_H(v_1, v_2)$, otherwise $d_{G \triangle H}((u_1, v_1), (u_2, v_2)) = 1 + Max\{d_G(u_1, u_2), d_H(v_1, v_2)\} = 1 + d_G(u_1, u_2).$

Proof. Assume that $(u_1, u_2) \sim (v_1, v_2)$. Since $G \land H \subset G \triangle H$, then $d_{G \triangle H}((u_1, v_1), (u_2, v_2)) \leq d_{G \land H}((u_1, v_1), (u_2, v_2)) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}$. But $G \triangle H \subset G \otimes H$, hence $d_{G \triangle H}((u_1, v_1), (u_2, v_2)) \geq d_{G \otimes H}((u_1, v_1), (u_2, v_2)) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}$. If $(u_1, u_2) \nsim (v_1, v_2)$ and $d_G(u_1, u_2) < d_H(v_1, v_2)$, then there exists a vertex (u_2, x) such that $(u_2, x) \sim (u_1, v_1)$, where $x \in V(H)$ satisfying $d_H(v_1, x) = Min\{d_H(v_1, y) : y \in V(H) and(u_2, y) \sim (u_1, v_1)\}$. Hence $d_{G \triangle H}((u_1, v_1), (u_2, x)) = d_H(v_1, x)$ and $d_{G \triangle H}((u_1, v_1), (u_2, v_2)) = d_H(v_1, x) + d_H(x, v_2) = d_H(v_1, v_2) = Max\{d_G(u_1, u_2), d_H(v_1, v_2)\}$. By the same technique, it is not difficult to prove the other case.

Let $G^{[r]}$ be the graph with the same vertex set as G and two vertices $u, v \in V(G^{[r]})$ are adjacent whenever $d_G(u, v) = r$.

Lemma 3.4. $(G \triangle H)^r = G^{r-1} \wedge H^r \cup G^{[r]} \wedge H^{[k]} \cup G^{2\lfloor \frac{r}{2} \rfloor} \times H^r$, where $k \leq r$ and k+r is even.

Proof. For any edge $(u_1, v_1)(u_2, v_2) \in E(G^{r-1} \wedge H^r) \cup E(G^{[r]} \wedge H^{[k]}) \cup E(G^{2\lfloor \frac{r}{2} \rfloor} \times H^r)$, where $k \leq r$ and k+r is even, by Lemma 3.3 $d_{G \bigtriangleup H}((u_1, v_1), (u_2, v_2)) \leq r$ and $(u_1, v_1)(u_2, v_2) \in E((G \bigtriangleup H)^r)$. Conversely, let $(u_1, v_1)(u_2, v_2) \in E((G \bigtriangleup H)^r)$, then $d_{G \bigtriangleup H}((u_1, v_1), (u_2, v_2)) \leq r$ and we have the following cases:

- (1) When $u_1 = u_2$, then $1 \le d_H(v_1, v_2) \le r$.
- (2) When $v_1 = v_2$, then $1 \le d_G(u_1, u_2) \le r 1$.
- (3) When $1 \le d_G(u_1, u_2) \le 2\lfloor \frac{r}{2} \rfloor$, then $1 \le d_H(v_1, v_2) \le r$.
- (4) When $d_G(u_1, u_2) = r$, then $d_H(v_1, v_2) = k$, where $r \ge k \in Z^+$ and r + k is even.

In other words $(u_1, v_1)(u_2, v_2) \in E(G^{2\lfloor \frac{r}{2} \rfloor} \times H^r)$ or $(u_1, v_1)(u_2, v_2) \in E(G^{r-1} \wedge H^r)$ or $(u_1, v_1)(u_2, v_2) \in \bigcup E(G^{[r]} \wedge H^{[k]})$, where $k \leq r$ and k + r is even. \Box

Following the same technique in Corollary 2.5, it is not difficult to prove the following corollary.

Corollary 3.5. $(G \triangle H)^r = G^r \triangle H^r$ iff G is null or H is null.

From the definitions of skew product and converse skew product, we conclude that:

Theorem 3.6. $(G \bigtriangledown H)^r = H^{r-1} \land G^r \cup H^{[r]} \land G^{[k]} \cup H^{2\lfloor \frac{r}{2} \rfloor} \times G^r$, where $k \leq r$ and k + r is even.

Corollary 3.7. $(G \bigtriangledown H)^r = G^r \bigtriangledown H^r$ iff G is null or H is null.

4. Wiener Index and Wiener Polarity Index of the Skew Product of Graphs

In this section, we compute the Wiener index and the Wiener polarity index of $G \triangle H$ and $G \bigtriangledown H$. The Wiener index [11] defined as the sum of distances between all vertex pairs in a connected graph. While the Wiener polarity index [11] is defined to be the number of unordered pairs of vertices $\{u, v\}$ of V(G) such that $d_G(u, v) = 3$. Let $W_k(G)$ be the number of unordered pairs of vertices $\{u, v\}$ of V(G) such that $d_G(u, v) = k$. Then the Wiener polarity index of a graph G, denoted by $W_P(G) = W_3(G)$ and the Wiener index $W(G) = \sum_{k \ge 1} k W_k(G)$. The Wiener index of cartesian product, join, composition and corna is computed in [12]. In [6], the Wiener index of strong product is computed. The Wiener polarity index of cartesian product, composition, strong product is computed in [4].

Lemma 4.1. Let G and H be two connected graphs, then $W_P(G \triangle H) = W_p(H) [|V(G)| + 2|E(G)| + 2W_2(G) + 2W_p(G)] + 2|E(H)|[W_p(G) + W_2(G)].$

Proof. According to Lemma 3.3, two vertices $(u_1, v_1), (u_2, v_2)$ are at distance 3 in $G \triangle H$ whenever: $(d_G(u_1, u_2), d_H(v_1, v_2))) = (0, 3), (1, 3), (2, 3), (3, 3), (3, 1), (2, 1)$. We distinguish between the following cases:

Case 1: when $(d_G(u_1, u_2), d_H(v_1, v_2)) = (0, 3)$, then $W_P(G \triangle H) = W_p(H)|V(G)|$. Case 2: when $(d_G(u_1, u_2), d_H(v_1, v_2)) = (1, 3)$, then $W_P(G \triangle H) = 2W_p(H)|E(G)|$. Case 3: when $(d_G(u_1, u_2), d_H(v_1, v_2)) = (2, 3)$, then $W_P(G \triangle H) = 2W_p(H)W_2(G)$. Case 4: when $(d_G(u_1, u_2), d_H(v_1, v_2)) = (3, 3)$, then $W_P(G \triangle H) = 2W_p(H)W_p(G)$. Case 5: when $(d_G(u_1, u_2), d_H(v_1, v_2)) = (3, 1)$, then $W_P(G \triangle H) = 2W_p(G)|E(H)|$. Case 6: when $(d_G(u_1, u_2), d_H(v_1, v_2)) = (2, 1)$, then $W_P(G \triangle H) = 2W_2(G)|E(H)|$. Therefore $W_P(G \triangle H) = W_P(H)[|V(G)| + 2|E(G)| + 2W_2(G) + 2W_P(G)] + 2|E(H)|[W_P(G) + W_2(G)]$.

Lemma 4.2. Let G and H be two connected graphs, then $W_P(G \bigtriangledown H) = W_p(G)[|V(H)| + 2|E(H)| + 2W_2(H) + 2W_p(H)] + 2|E(G)|[W_p(H) + W_2(H)].$

Theorem 4.3. Let G and H be connected graphs, then $W(G \triangle H) = n_1^2 W(H) + n_2[W(G) + \sum_{i=1}^{i=\lfloor \frac{D}{2} \rfloor} W_{2i-1}(G)] + 2\sum_{i=2}^{i=D} W_i(G)[\sum_{j=2}^{j=i}[iW_{j-1}(H) + (i-1)W_{j-2}(H)],$ where $|V(G)| = n_1, |V(H)| = n_2$ and $D = diam(G \triangle H) = Max\{diam(G) + 1, diam(H)\}.$

Proof. Let G and H be connected graphs with $|V(G)| = n_1, |V(H)| = n_2$, then $G \triangle H$ is connected. We note that when k is even, then

$$W_k(G \triangle H) = W_k(H) \Big[n_1 + 2\sum_{i=1}^{i=k} W_i(G) \Big] + (W_k(G) + W_{k-1}(G)) \Big[n_2 + 2\sum_{i=1}^{i=\frac{k-2}{2}} W_{2i}(H) \Big],$$

for k > 2 and $W_2(G \triangle H) = W_2(H) \left[n_1 + 2 \sum_{i=1}^{i=2} W_i(G) \right] + n_2 \left[W_2(G) + W_1(G) \right]$. When k is odd, $W_k(G \triangle H) = W_k(H) \left[n_1 + 2 \sum_{i=1}^{i=k} W_i(G) \right] + 2 \left[W_k(G) + W_{k-1}(G) \right]$ $\sum_{i=1}^{i=\frac{k-1}{2}} W_{2i-1}(H), \text{ for } k \geq 3 \text{ and } W_1(G \bigtriangleup H) = W_1(H) [n_1 + 2W_1(G)]. \text{ Let } D = Max\{diam(G) + 1, diam(H)\}. \text{ Assume without loss of generality that } D \text{ is even, then}$

$$W = W_{1}(H) [n_{1} + 2W_{1}(G)] + 2\left[W_{2}(H)[n_{1} + 2\sum_{i=1}^{i=2} W_{i}(G)] + n_{2}[W_{2}(G) + W_{1}(G)]\right] + 2\left[W_{3}(H)[n_{1} + 2\sum_{i=1}^{i=3} W_{i}(G)] + 2\left[W_{3}(G) + W_{2}(G)\right]W_{1}(H)\right] + 4\left[W_{4}(H)[n_{1} + 2\sum_{i=1}^{i=4} W_{i}(G)] + (W_{4}(G) + W_{3}(G))[n_{2} + 2W_{2}(H)]\right] + \frac{1}{2}$$

$$D\left[W_{D}(H)[n_{1} + 2\sum_{i=1}^{i=D} W_{i}(G)] + (W_{D}(G) + W_{D-1}(G))[n_{2} + 2\sum_{i=3}^{i=D} W_{2i}(H)]\right].$$

Which would imply that

$$W = W(H) \left[n_1 + 2 \sum_{i=1}^{i=D} W_i(G) \right] + 2n_2 \left[\sum_{i=1}^{i=D} \left\lceil \frac{i}{2} \right\rceil W_i(G) \right] + 2\sum_{i=2}^{i=D} W_i(G) \left[\sum_{j=2}^{j=i} \left[iW_{j-1}(H) + (i-1)W_{j-2}(H) \right] \right]$$
$$= n_1^2 W(H) + 2n_2 \left[\sum_{i=1}^{i=D} \left\lceil \frac{i}{2} \right\rceil W_i(G) \right] +$$

$$2\sum_{i=2}^{i=D} W_i(G) \bigg[\sum_{j=2}^{j=i} \big[iW_{j-1}(H) + (i-1)W_{j-2}(H) \big] \bigg].$$

= $n_1^2 W(H) + n_2 \big[W(G) + \sum_{i=1}^{i=\lfloor \frac{D}{2} \rfloor} W_{2i-1}(G) \big] +$
 $2\sum_{i=2}^{i=D} W_i(G) \bigg[\sum_{j=2}^{j=i} \big[iW_{j-1}(H) + (i-1)W_{j-2}(H) \big] \bigg].$

Theorem 4.4. Let G and H be connected graphs, then

$$W(G \bigtriangledown H) = n_2^2 W(G) + n_1 \left[W(H) + \sum_{i=1}^{i=\lfloor \frac{D}{2} \rfloor} W_{2i-1}(H) \right] + 2 \sum_{i=2}^{i=D} W_i(H) \left[\sum_{j=2}^{j=i} \left[iW_{j-1}(G) + (i-1)W_{j-2}(G) \right] \right],$$

 $where \ |V(G)| = n_1, |V(H)| = n_2 \ and \ D = diam(G \bigtriangledown H) = Max\{diam(G)(H) + 1\}.$

Conflicts of Interest. The authors declare that there is no conflicts of interest regarding the publication of this article.

References

- R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, CRC press, Boca Raton, FL, 2011.
- [2] F. Harary, *Graph Theory*, Addison-Wesley Publishing Co., Reading, Mass. -Menlo Park, Calif. -London 1969.
- [3] F. Harary, G. W. Wilcox, Boolean operations on graphs, Math. Scand. 26(1) (1967) 41–51.
- [4] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Combin. 116 (2014) 235–244.
- [5] S. Moradi, A note on tensor product of graphs, Iran. J. Math. Sci. Inform. 7(1) (2012) 73-81.
- [6] I. Peterina, P. Z. Pleteršek, Wiener index of strong product of graphs, Opuscula Math. 38(1) (2018) 81–94
- [7] M. A. Seoud, On square graphs, Proc. Pakistan Acad. Sci. 25(1) (1991) 35-42.
- [8] M. A. Seoud, Operations related to squaring of graphs, Proc. Pakistan Acad. Sci. 28(3) (1991) 303–309.
- [9] M. A. Seoud, On power graphs, Ain Shams Science Bulletin 29(A) (1992) 125–135.
- [10] Y. Shibata, Y. Kikuchi, Graph products based on the distance in graphs, IEICE Trans. Fundamentals E83-A(3) (2000) 459-464.

- [11] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69(1) (1947) 17–20.
- [12] Y. N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135(1-3) (1994) 359–365.

Mohamed A. Seoud Department of Mathematics, Faculty of Science, Ain Shams University Abbassia, Cairo, Egypt E-mail: m.a.seoud@hotmail.com

Hamdy Mohamed Hafez Department of Basic Science, Faculty of Computers and Information, Fayoum University, Fayoum 63514, Egypt E-mail: hha00@fayoum.edu.eg