The Non-Coprime Graph of Finite Groups

Gholamreza Aghababaei-Beni and Abbas Jafarzadeh *

Abstract

The non-coprime graph Π_G of a finite group G is a graph with the vertex set $G \setminus \{e\}$, where two distinct vertices u and ν are adjacent if they have non-coprime orders. In this paper, the main properties of the Cartesian and tensor product of the non-coprime graph of two finite groups are investigated. We also describe the non-coprime graph of some special groups including the dihedral and semi-dihedral groups. Some open questions are also proposed.

Keywords: Coprime graph, Dihedral group, Semi-dihedral group, Dicyclic group.

2010 Mathematics Subject Classification: 05C15, 20D15, Secondary: 05C75.

How to cite this article

G. Aghababaei–Beni and A. Jafarzadeh, The non-coprime graph of finite groups, *Math. Interdisc. Res.* **3** (2018) 109 - 119.

1. Introduction

In this paper, all groups considered are finite and a graph means an undirected simple graph without loops and multiple edges. For any graph Π , the sets of all vertices and edges of Π are denoted by $V(\Pi)$ and $E(\Pi)$, respectively.

Given a group G, there are different ways to associate a graph to G, including the prime graph [8], commuting graph [4], and Cayley graphs which have a long history and valuable applications.

The non-coprime graph Π_G of a finite group G is a graph with $G \setminus \{e\}$ as the vertex set and two distinct vertices u and ν are adjacent if $(|u|, |\nu|) \neq 1$. This graph was first introduced in [5]. The relative non-coprime graph $\Pi_{(G,H)}$ of G and a

© 2018 University of Kashan

(CC) BY

This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author (E-mail: jafarzadeh@um.ac.ir)

Academic Editor: Ali Reza Ashrafi

Received 17 February 2018, Accepted 27 February 2019 DOI: 10.22052/mir.2019.172393.1117

subgroup H of G is a spanning subgraph of Π_G where two distinct vertices u and ν are adjacent if at least one of them belongs to H. Clearly $\Pi_{(G,G)} = \Pi_G$. In the next section, we investigate the cartesian and tensor product of the non-coprime graph of two groups. In the last section, some properties of the non-coprime graph of the groups D_{2n} , U_{2nm} , V_{8n} , T_{4n} and SD_{8n} such as their clique numbers, chromatic numbers and connectivity are investigated. We show that the non-coprime graph of all these groups are perfect graphs.

We use the notation $u \sim v$ to show that two vertices u and v are adjacent in the background graph. All other notations are standard and can be found for example in [1].

2. Graph Operations on Non-Coprime Graphs

The aim of this section is to study the non-coprime graph under two graph operations Cartesian and tensor product of graphs.

Definition 2.1. Let G_1 and G_2 be two graphs. The cartesian product of G_1 and G_2 denoted $G_1 \times G_2$, is the graph with vertex set $V(G_1) \times V(G_2)$ and two distinct vertices (u, v) and (u', v') are adjacent if u = u' and $v \sim v'$ or v = v' and $u \sim u'$. The tensor product of G_1 and G_2 denoted $G_1 \otimes G_2$, is the graph with vertex set $V(G_1) \times V(G_2)$ and two distinct vertices (u, v) and (u', v') are adjacent if $u \sim u'$ and $v \sim v'$.

For an arbitrary group G, we use G^* for the set of all non-identity elements of G.

Lemma 2.2. Let G_1 and G_2 be two groups. Then $\Pi_{G_1} \times \Pi_{G_2}$ and $\Pi_{G_1} \otimes \Pi_{G_2}$ both are proper spanning subgraphs of $\Pi_{G_1^* \times G_2^*}$ which itself is the induced subgraph of $\Pi_{G_1 \times G_2}$ on $G_1^* \times G_2^*$.

Proof. It is obvious that $V(\Pi_{G_1} \times \Pi_{G_2}) = V(\Pi_{G_1} \otimes \Pi_{G_2}) = V(\Pi_{G_1^* \times G_2^*}) = G_1^* \times G_2^*$. Let (u, v) and (u', v') be two arbitrary vertices of $\Pi_{G_1} \times \Pi_{G_2}$ such that $(u, v) \sim (u', v')$. We claim that $(u, v) \sim (u', v')$ in $\Pi_{G_1 \times G_2}$. We have u = u' and $v \sim v'$ or v = v' and $u \sim u'$. Without loss of generality, let u = u' and $v \sim v'$. Then $(|v|, |v'|) \neq 1$. Hence there exists a positive integer $d \neq 1$ such that d||v| and d||v'|. Therefore d||(u, v)| and d||(u', v')| which implies that they are adjacent in $\Pi_{G_1 \times G_2}$.

The next corollary is an obvious result of the previous lemma:

Corollary 2.3. Let G_1 and G_2 be two group and $H_1 \leq G_1$ and $H_2 \leq G_2$ be nontrivial subgroups of G_1 and G_2 , respectively. Then

- (i) $\Pi_{G_1,H_1} \times \Pi_{G_2,H_2} \neq \Pi_{G_1^* \times G_2^*,H_1^* \times H_2^*}$; and
- (ii) $\Pi_{G_1,H_1} \otimes \Pi_{G_2,H_2} \lneq \Pi_{G_1^* \times G_2^*,H_1^* \times H_2^*}$.

Remark 1. Let G_1 and G_2 be two group and $(u, v) \in \Pi_{G_1} \otimes \Pi_{G_2}$. Then by definition, $\deg_{\Pi_{G_1} \otimes \Pi_{G_2}} ((u, v)) = \deg_{\Pi_{G_1}} (u) + \deg_{\Pi_{G_2}} (v)$.

The following theorem is an immediate consequence of above observation:

Theorem 2.4. Let G_1 and G_2 be two groups of orders p^{k_1} and q^{k_2} , respectively, where p and q are odd primes and k_1 and k_2 are positive integers. Then $\Pi_{G_1} \otimes \Pi_{G_2}$ is a spanning Eulerian subgraph of $\Pi_{G_1^* \times G_2^*}$.

Proof. By Remark ??, it is sufficient to prove that $\Pi_{G_1} \otimes \Pi_{G_2}$ is Eulerian. Since G_1 and G_2 are of prime power orders, their non-coprime graphs are complete. Let (a, b) be an arbitrary vertex of $\Pi_{G_1} \otimes \Pi_{G_2}$. Then

$$\deg_{\Pi_{G_1} \otimes \Pi_{G_2}} ((u, v)) = \deg_{\Pi_{G_1}} (u) + \deg_{\Pi_{G_2}} (v)$$
$$= p^{k_1} - 2 + q^{k_2} - 2$$
$$= p^{k_1} + q^{k_2} - 4$$

and so the degree of every vertex of $\Pi_{G_1} \otimes \Pi_{G_2}$ is even. Therefore, the graph is Eulerian.

3. The Non-Coprime Graph of Some Groups

Suppose $\alpha(G)$, $\omega(G)$, $\chi(G)$ and $\theta(G)$ denote the independence, clique, chromatic and covering numbers of a graph G. In this section, we obtain some results on the non-coprime graph of the Dihedral groups, Semi-dihedral groups and some other groups. Let $D_{2n} = \langle a, b \mid a^n = b^2 = 1, ba = a^{-1}b \rangle$ be the dihedral group of order 2n.

Theorem 3.1. If n is an odd natural number, then

- (i) $\omega(\Pi_{D_{2n}}) = \chi(\Pi_{D_{2n}}) = n;$
- (ii) $\theta(\Pi_{D_{2n}}) = \theta(\Pi_{Z_n}) + 1 = |\pi(Z_n)| + 1;$
- (iii) $\alpha(\Pi_{D_{2n}}) = \theta(\Pi_{D_{2n}}).$

Proof. (i) For $1 \leq i, j \leq n$ we have $|a^i b| = 2$ and $|a^j|$ is odd such that $(|a^i b|, |a^j|) = 1$. Hence $\Pi_{D_{2n}}$ is a graph with two components $\Pi_{\langle a \rangle}$ and K_n . Therefore $\omega(\Pi_{D_{2n}}) = \chi(\Pi_{D_{2n}}) = n$.

(ii) The minimum number of cliques that cover D_{2n} is by (i) the minimum number of cliques that cover Z_n plus 1. (iii) It is obvious by (ii).

Theorem 3.2. If $n = 2^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ where p_1, \ldots, p_r are odd primes and k_1, \ldots, k_r are non-negative integers with $k_1 \ge 1$, then $\prod_{D_{2n}}$ is connected and

(i) $diam(\Pi_{D_{2n}}) \le 2;$

(ii)
$$\theta(\Pi_{D_{2n}}) = \theta(\Pi_{Z_n}) = |\pi(Z_n)|;$$

(iii)
$$\omega(\Pi_{D_{2n}}) = \frac{n(2^{k_1}-1)}{2^{k_1}} + n.$$

Proof. (i) D_{2n} has an element of order $2p_2p_3\cdots p_r$ such that all other vertices are adjacent to which. Hence $\Pi_{D_{2n}}$ is connected and $diam(\Pi_{D_{2n}}) \leq 2$.

(ii) The minimum number of cliques that cover D_{2n} is the minimum number of cliques that cover Z_n .

(iii) It is obvious by (ii).

Now let V_{8n} be the group presented by $\langle a, b | a^{2n} = b^4 = 1, ba = a^{-1}b^{-1}, b^{-1}a = a^{-1}b\rangle$, for $n \ge 1$. We have the following results on its non-coprime graph:

Theorem 3.3. (i) $\Pi_{V_{8n}}$ is a connected graph.

- (ii) $\Pi_{V_{8n}}$ is Eulerian if and only if n is a power of 2.
- (iii) $\Pi_{V_{8n}}$ has an Eulerian spanning subgraph.
- (iv) $\gamma(V_{8n}) = 1$

Proof. (i) Since $\Pi_{\langle a \rangle}$ is a subgraph of $\Pi_{V_{8n}}$, the order of $\Pi_{V_{8n}-\langle a \rangle}$ is even, two vertices of order 2 are adjacent and $\Pi_{Z_{2n}}$ is connected, $\Pi_{V_{8n}}$ is connected.

(ii) Since $\Pi_{V_{8(2^k)}}$ is a complete graph of odd order, the degree of each vertex is even. So, the graph is Eulerian. If $8n = 2^{k_1} p_2^{k_2} \dots p_r^{k_r}$, then the number of vertices that are divided by p_i $((2 \leq i \leq r))$ is even. Hence the degree of p_i is odd and $\Pi_{V_{8n}}$ is not Eulerian.

(iii) Each edge in $\Pi_{V_{8n}}$ is on a triangle, so the graph has an Eulerian spanning subgraph.

(iv) Since $\Pi_{V_{8(2^k)}}$ has at least end – vertices, $\gamma(\Pi_{V_{8n}}) = 1$.

Theorem 3.4. In the graph $\Pi_{V_{8n}}$

- 1. If $n = 2^k$ then $\omega(\Pi_{V_{8n}}) = 8n 1$;
- 2. If $n = 2^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$ where p_2, \ldots, p_r are distinct odd prime numbers and k_1, \ldots, k_r are positive integers, then

$$\omega(\Pi_{V_{8n}}) = 8n - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$$

Proof. 1. If $n = 2^k$, then 2 divides the order of each vertex. Hence $\omega(V_{8n}) = 8n - 1$.

2. If $n = 2^{k_1} p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$, then number of vertices that p_i divides their orders but 2, $p_1, \dots, p_{i-1}, p_{i+1}, \dots p_r$ don't divides their orders is $p_i^{k_i} - 1$. Moreover, the number of vertices that 2 does not divides their orders are $p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$ and so the largest clique has even order. Thus, $\omega(V_{8n}) = 8n - p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$. Hence the result. **Theorem 3.5.** $\Pi_{V_{8n}}$ is not planar graph.

Proof. Since there is at least 5 vertex of order that 2 divides them order so $K_5 \leq \Pi_{V_{8n}}$. Then $\Pi_{V_{8n}}$ is not planar graph. \Box

Theorem 3.6. Let $U_{2nm} = \langle a, b | a^{2n} = b^m = 1, aba^{-1} = b^{-1}$. If $n = 2^{k_1} p_2^{k_2} \dots p_r^{k_r}$, $m = 2^{l_1} q_2^{l_2} \dots q_s^{l_s}$ and for $1 \ i \leq r$, p_i are distinct prime and for $1 \leq j \leq s$, q_j are distinct prime and k_i, l_j are in Z. Then in U_{2nm} group:

- 1. The number of elements that 2 divides them order is $2nm \frac{nm}{2^{k_1+l_1}}$;
- 2. The number of elements that p_i divides them order and $p_i \mid n, p_i \mid m, p_i = q_t$ is $2nm - \frac{nm}{p_i^{k_i}} - \frac{nm}{p_i^{k_i+l_t}}$;
- 3. The number of elements that p_i divides them order and $p_i \mid n, p_i \nmid m$ is $2nm \frac{2nm}{p_i^{k_i}}$;
- 4. The number of elements that q_j divides them order and $q_j \nmid n, q_j \mid m$ is $nm \frac{nm}{q_j^{l_j}}$.

Proof. We know in U_{2nm}

- (a) Order of $a^i b^j$, that $1 \le i \le 2n$, i is odd, $1 \le j \le m$ is $2\frac{n}{(i,n)}$;
- (b) Order of $a^i b^j$, that $1 \le i \le 2n$, i is even, $1 \le j \le m$ is $\left[\frac{2n}{(i,2n)}, \frac{m}{(j,m)}\right]$;
 - 1. To obtain the number of element of even order we obtain the number of elements that 2 not divides them order in section a and b and sum them and obtain difference 2nm of it.
 - (a) The number of elements $a^i b^j$, that $1 \le i \le 2n$, i is odd, $1 \le j \le m$ and $2 \nmid O(a^i b^j)$ is zero.
 - (b) The number of elements $a^{i}b^{j}$, that $1 \leq i \leq 2n$, i is even, $1 \leq j \leq m$ and $2 \nmid O(a^{i}b^{j})$ is $2nm - (p_{2}^{k_{2}}p_{3}^{k_{3}}\dots p_{r}^{k_{r}})(q_{2}^{l_{2}}q_{3}^{l_{3}}\dots q_{s}^{l_{s}});$

That $p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$ is the number of *i* that that for them $\frac{2n}{(i,2n)}$ is odd and $q_2^{l_2} q_3^{l_3} \dots q_s^{l_s}$ is the number of *j* that that for them $\frac{m}{(j,m)}$ is odd. So the number of elements that 2 divides them order is $2nm - \frac{nm}{2^{k_1+l_1}}$;

2. To obtain the number of elements that p_i divides them order and $p_i \mid m, p_i \mid n$ obtain the number of element that p_i not divides them order in section a and b and sum them and obtain difference 2nm of it.

- (a) The number of elements $a^i b^j$, that $1 \le i \le 2n$, i is odd, $1 \le j \le m$ and $p_i \nmid O(a^i b^j)$ is $\frac{n}{p_i^{k_i}}m$;
- (b) The number of elements $a^{i}b^{j}$, that $1 \leq i \leq 2n$, i is even, $1 \leq j \leq m$, $p_{i} \nmid O(a^{i}b^{j})$ and $p_{i} = q_{t}$ is $\frac{n}{p_{i}^{k_{i}}} \cdot \frac{m}{p_{i}^{l_{t}}};$

So the number of elements that p_i divides them order is $2nm - \frac{nm}{p_i^{k_i}} - \frac{nm}{p_i^{k_i+l_t}}$;

- 3. To obtain the number of elements that p_i divides them order and $p_i \nmid m, p_i \mid n$ obtain the number of element that p_i not divides them order in section a and b and sum them and obtain difference 2nm of it.
 - (a) The number of elements $a^i b^j$, that $1 \le i \le 2n$, i is odd, $1 \le j \le m$ and $p_i \nmid O(a^i b^j)$ is $\frac{n}{p_i^{k_i}}m$;
 - (b) The number of elements $a^i b^j$, that $1 \le i \le 2n$, i is even, $1 \le j \le m$, $p_i \nmid O(a^i b^j)$ is $\frac{n}{p_i^{k_i}}m$;

So number of elements that p_i divides them order is $2nm-\frac{n}{p_i^{k_i}}m-\frac{n}{p_i^{k_i}}m=2nm$

$$2nm - \frac{2nm}{p_i^{k_i}};$$

- 4. To obtain the number of elements that pq_j divides them order and $q_j \mid m, q_j \nmid n$ obtain the number of element that q_j not divides them order in section a and b and sum them and obtain difference 2nm of it.
 - (a) The number of elements $a^i b^j$, that $1 \le i \le 2n$, i is odd, $1 \le j \le m$ and $q_j \nmid O(a^i b^j)$ is nm;
 - (b) The number of elements $a^i b^j$, that $1 \le i \le 2n$, i is even, $1 \le j \le m$, $q_j \nmid O(a^i b^j)$ is $\frac{nm}{p_i^{k_i}}$;

So number of elements that q_j divides them order is $2nm - (nm + \frac{nm}{q_j^{l_j}}) =$

$$nm - \frac{nm}{q_j^{l_j}}.$$

Theorem 3.7. $\Pi_{U_{2nm}}$ is planar graph if and only if n < 2, m < 4 or n = 3, m = 1.

Proof. By before theorem k_5 is not subgraph of $\Pi_{U_{2nm}}$ if and only if m = 1, n = 3 or m < 3, n < 2.

Theorem 3.8. $\Pi_{U_{2nm}}$

- 1. Is connected other than n = 1, m be odd.
- 2. If be connected has end vertex
- 3. Is line graph when $nm = p^i$ and p is prime and $i = 0, 1, 2, \cdots$
- *Proof.* 1. If n = 1 and m be odd then elements of even are only order of 2 and other elements has odd order so there is not patd betven elements of order 2 and elements of even order and graph is not connected. In otherwise there are elements of order [m,n] that is connect to all vertices of U_{2nm} .
 - 2. All elements of order [m,n] are end vertex.
 - 3. If $nm = p^i$ that p is prime, then in $\Pi_{U_{2nm}}$ each vertex is at most in two clique and $\Pi_{U_{2nm}}$ is line graph.

Theorem 3.9. If $n = 2^{k_1} p_2^{k_2} \dots p_r^{k_r}$, $m = 2^{l_1} q_2^{l_2} \dots q_s^{l_s}$ and for $1 \ i \le r$, p_i are distinct prime and for $1 \le j \le s$, q_j are distinct prime and k_i, l_j are in Z. Then in $\Pi_{U_{2nm}}$:

$$\omega(\Pi_{2nm}) \ge max\{t_1, t_2, t_3, t_4\}$$

that $t_1 = nm(2 - \frac{1}{2^{k_1 + l_1}}), t_2 = 2nm(1 - \frac{1}{p_{r_1}^{k_{r_1}}}), t_3 = 2nm - nm(\frac{1}{p_t^{k_t}} + \frac{1}{p_t^{k_t + l_j}}), t_4 = nm - (1 - \frac{1}{p_t^{k_t}}), p_t^{k_t}$ is greatest divisor of n that n, divides m, n = a, and $n^{k_{r_1}}$

 $nm - (1 - \frac{1}{q_{s_1}^{l_{s_1}}}), p_t^{k_t}$ is greatest divisor of n that p_t divides $m, p_t = q_j$ and $p_{r_1}^{k_{r_1}}$

is greatest divisor of n that p_{r_1} , m not divides m and $q_{s_1}^{l_{s_1}}$ is greatest divisor of m that q_{s_1} not divides n.

Proof. Enough in $\Pi_{U_{2nm}}$ obtain the number of elements that divides them order prime number that divides m, n or 2 divides them order and obtain maximum of them that is $max\{t_1, t_2, t_3, t_4\}$. So proof complated.

Theorem 3.10. Other than n = m = 1 and n = 1 m = 3 in otherwise of n, $m \prod_{U_{2nm}}$ have spaning Eulerian subgraph.

Proof. If $\Pi_{U_{2nm}}$ be unconnected graph, then the number of vertex of even order are larger than 2 and there are vertices that connect to vertex of odd order, so sach edge belong to triangle. If $\Pi_{U_{2nm}}$ be connected graph, then hase at least 2 evd-vertex and each edge belong to triangle. Then $\Pi_{U_{2nm}}$ is Eulerian.

Theorem 3.11. Let $T_{4n} = \langle a, b | a^{2n} = 1a^n = b^2, b^{-1}ab = a^{-1} \rangle$. Then $\Pi_{T_{4n}}$

- 1. Is connected graph.
- 2. Is Eulerian if $n = 2^k$ and otherwise not Eulerian.

- 3. Has Eulerian spanning subgraph.
- 4. $\gamma(\Pi_{T_{4n}}) = 1$
- 5. If $n \neq 1$ not planar graph.
- *Proof.* 1. Since $\Pi_{Z_{2n}}$ is subgraph of $\Pi_{T_{4n}}$ and order of $\Pi_{T_{4n}-Z_{2n}}$ are 4 that join to vertices of order even and $\Pi_{Z_{2n}}$ is connected, then $\Pi_{T_{4n}}$ is connected.
 - 2. If $n = 2^k$, then $\Pi_{T_{4n}}$ is is complete graph of order 4n 1 and degree of each vertex is 4n 2 and is even, so $\Pi_{T_{4n}}$ is Eulerian. If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, degree of vertex that order is p_i equal

$$\frac{2n(p_i^{k_i} - 1)}{p_i^{k_i}} - 1$$

That is odd and $\Pi_{T_{4n}}$ is not Eulerian.

$$\frac{2n(p_i^{k_i} - 1)}{p_i^{k_i}} - 1$$

- 3. $\Pi_{Z_{2n}}$ has spanning Eulerian subgraph, then each edge of this sub graph is in triangle. Eenouph that prove if $e = v_1v_2$ is edge where $|v_1| = 4, |v_2| \neq 4$ or $|v_1| = |v_2| = 4$ then e be in triangle. If n = 1, then $\Pi_{T_{4n}}$ is complete graph of order 3. If $n \neq 1$ there is at least 6 vertex of order $4 \ in \Pi_{T_{4n}}$ and if $|v_1| = 4, |v_2| \neq 4$ then order of v_2 is even, then there is edge between v_2 and vertex of order 4 as v_3 , so $v_3 \sim v_1 \sim v_2 \sim v_3$ and e is in triangle. If $|v_1| = |v_2| = 4$ proof is similarity.
- 4. $\Pi_{T_{4n}}$ has vertex of order 2n that adjoin to all vertices, then $\gamma(\Pi_{T_{4n}}) = 1$
- 5. Obviously Π_{T_4} is complete graph and planar. If $n \neq 1$ there is at least 6 vertex of order 4 so $k_5 \leq \Pi_{T_{4n}}$ is not planar.

- **Theorem 3.12.** If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ where p_i are distinct prime number and $k_i \in Z^+$, then :
 - (i) If n be odd :

$$\omega(\Pi_{T_{4n}}) = 3n$$

(ii) If n be even, i.e $p_1 = 2$, then:

$$\omega(\Pi_{T_{4n}}) = 4n - p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$$

Proof. Since $\Pi_{Z_{2n}}$ is subgraph of $\Pi_{T_{4n}}$ and order of $\Pi_{T_{4n}-Z_{2n}}$ are 4 that join to vertices of order even, then clique of even vertices is largest clique of $\Pi_{T_{4n}}$, so sufficient to obtain the number of even order.

- (i) The number of element of even order in Z_{2n} is $\frac{2n(2-1)}{2} = n$, then the number of element of even order in $\prod_{T_{4n}}$ is 2n + n = 3n
- (ii) The number of element of even order in Z_{2n} is $\frac{2n(2^{k_1+1}-1)}{2^{k_1+1}}$, then The number of element of even order in $\prod_{T_{4n}}$ is

$$\omega(\Pi_{T_{4n}}) = 2n + \frac{2n(2^{k_1+1}-1)}{2^{k_1+1}} = 2n(2-\frac{1}{2^{k_1+1}}) = 4n - p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$$

Theorem 3.13.

$$\chi(\Pi_{T_{4n}}) = \omega(\Pi_{T_{4n}})$$

Proof. Let n be odd, then large clique contain $\omega(\Pi_{T_{4n}}) = 3n$ vertices and remaining vertices that are n-1 and odd order coloring with 3n color. If n be even then large clique contain $\omega(\Pi_{T_{4n}}) = 4n - p_2^{k_2} p_3^{k_3} \dots p_r^{k_r}$ vertices where $n = 2^{k_1} p_2^{k_2} \dots p_r^{k_r}$ and $p_2^{k_2} p_3^{k_3} \dots p_r^{k_r} < n$, so

$$4n - p_2^{k_2} p_3^{k_3} \dots p_r^{k_r} > 3n$$

and remaining vertices that are at least n-2 and coloring with $\omega(\Pi_{T_{4n}})$ color and

$$\chi(\Pi_{T_{4n}}) = \omega(\Pi_{T_{4n}})$$

Theorem 3.14. In graph $\Pi_{T_{4n}}$:

- 1. $diam(\Pi_{T_{4n}}) \leq 2$
- 2. $\Pi_{T_{4n}}$ is line graph if and only if $n = p^k$ or $n = 2^k$ or $n = 2^k p^k$ where p is prime.
- 3. If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ the number of $\prod_{T_{4n}}$ end-vertices is:
 - (a) If n be odd:

$$(p_1^{k_1}-1)(p_2^{k_2}-1)\dots(p_r^{k_r}-1)$$

(b) If n be even i.e. $p_1 = 2$:

$$(2^{k_1+1}-1)(p_2^{k_2}-1)\dots(p_r^{k_r}-1)$$

Proof. 1. Since $diamm(\Pi_{Z_{2n}}) \leq 2$, then by definition of $\Pi_{T_{4n}}$, $diam(\Pi_{T_{4n}}) \leq 2$.

2. Edge set of $\Pi_{T_{4n}}$ can be partitioned in to a set of clique with the property that any vertex lies in at most two clique if and only if n be $n = p^k$ or $n = 2^k$ or $n = 2^k p^k$ by theorem 1.7.2 of [3] proof complete.

3. The number of $\Pi_{T_{4n}}$ end-vertices is equal with the number of $\Pi_{Z_{2n}}$ end-vertices that is number of vertices that $p_1p_2\cdots p_r$ divides them order and is $(p_1^{k_1}-1)(p_2^{k_2}-1)\ldots(p_r^{k_r}-1)$ when n is odd and is $(2^{k_1+1}-1)(p_2^{k_2}-1)\ldots(p_r^{k_r}-1)$ when n is even.

Theorem 3.15. Let $SD_{8n} = \langle a, b | a^{4n} = b^2 = 1, bab = a^{2n-1}$. Then $\prod_{SD_{8n}}$

- 1. Is connected graph.
- 2. If $n = 2^k$ ($0 \le k \in \mathbb{Z}$) $\prod_{SD_{8n}}$ is Eulerian and otherwise is not Eulerian graph
- 3. $\Pi_{V_{8n}}$ has Eulerian spanning subgraph.
- 4. $\gamma(V_{8n}) = 1$

Proof. Since $\Pi_{Z_{4n}}$ is sub graph of $\Pi_{SD_{8n}}$ and order of $\Pi_{SD_{8n}-Z_{4n}}$ vertex are even(2n vertex of order 2 and 2n vertex of order 4) that join to vertices of even order, then this graph has specifications of $\Pi_{Z_{4n}}$

Theorem 3.16. Let $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, then

1. If n is odd

$$\omega(\Pi_{SD_{8n}}) = 7n$$

2. If n is even i.e. $p_1 = 2$

$$\omega(\Pi_{SD_{8n}}) = 8n - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$$

Proof. The number of element s of odd order in $\Pi_{SD_{8n}}$ is $p_2^{k_2} \cdots p_r^{k_r} - 1$. Then clique number of $\Pi_{SD_{8n}}$ is the number of vertices that order is even that is

$$8n - 1 - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r} - 1$$

then

 $\omega(\Pi_{SD_{8n}}) = 8n - p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$

Corollary 3.17.

$$\chi(\Pi_{SD_{8n}}) = \omega(\Pi_{SD_{8n}})$$

Proof. By before theorem $7n \leq \omega(\Pi_{SD_{8n}})$, then vertices that remaining of largest clique are coloring with 7n color, then

$$\chi(\Pi_{SD_{8n}}) = \omega(\Pi_{SD_{8n}})$$

Confilcts of Interest. The author declares that he has no conflicts of interest.

References

- J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, American Elsevier, New York, 1976.
- [2] I. Fabrici and T. Madaras, The structure of 1-planar graphs, *Discrite Math* 307(7-8) (2007) 854–865.
- [3] C. Godsil and G. F. Royle, Algebraic Graph Theory, Springer Science, Business Media, 2013.
- [4] A. Iranmanesh and A. Jafarzadeh, On the commuting graph associated with the symmetric and alternating groups, *Int. J. Algebra* **7**(1) (2008) 129 146.
- [5] F. Mansoori, A. Erfaniana and B Tolue, Non-coprime graph of a finite group, AIP Conference Proceedings 1750 (2016) 050017.
- [6] Z. Mehranian, A. Gholami and A. R. Ashrafi, A note on the power graph of a finite group, Int. J. Group Theory 5 (2016) 1 – 10.
- [7] M. Mirzargar, A. R. Ashrafi and M. J. Nadjafi-Arani, On the power graph of a finite group, *Filomat* 26 (2012) 1201 – 1208.
- [8] J. S. Williams, Prime graph components of finite groups, Int. J. Algebra 69(2) (1981) 487 - 513.

Gholamreza Aghababaei-Beni Department of Pure Mathematics, International Campus of Ferdowsi University of Mashhad, Mashhad, I. R. Iran E-mail: g_aghababaei@yahoo.com

Abbas Jafarzadeh Department of Pure Mathematics, International Campus of Ferdowsi University of Mashhad, Mashhad, I. R. Iran E-mail: jafarzadeh@um.ac.ir