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The Non-Coprime Graph of Finite Groups

Gholamreza Aghababaei−Beni and Abbas Jafarzadeh ?

Abstract
The non-coprime graph ΠG of a finite group G is a graph with the vertex

set G \ {e}, where two distinct vertices u and ν are adjacent if they have
non-coprime orders. In this paper, the main properties of the Cartesian and
tensor product of the non-coprime graph of two finite groups are investigated.
We also describe the non-coprime graph of some special groups including the
dihedral and semi-dihedral groups. Some open questions are also proposed.
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1. Introduction
In this paper, all groups considered are finite and a graph means an undirected
simple graph without loops and multiple edges. For any graph Π, the sets of all
vertices and edges of Π are denoted by V (Π) and E(Π), respectively.

Given a group G, there are different ways to associate a graph to G, including
the prime graph [8], commuting graph [4], and Cayley graphs which have a long
history and valuable applications.

The non-coprimle graph ΠG of a finite group G is a graph with G \ {e} as
the vertex set and two distinct vertices u and ν are adjacent if (|u|, |ν|) 6= 1. This
graph was first introduced in [5]. The relative non-coprime graph Π(G,H) ofG and a
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subgroup H of G is a spanning subgraph of ΠG where two distinct vertices u and ν
are adjacent if at least one of them belongs toH. Clearly Π(G,G) = ΠG. In the next
section, we investigate the cartesian and tensor product of the non-coprime graph
of two groups. In the last section, some properties of the non-coprime graph of the
groups D2n, U2nm, V8n, T4n and SD8n such as their clique numbers, chromatic
numbers and connectivity are investigated. We show that the non-coprime graph
of all these groups are perfect graphs.

We use the notation u ∼ v to show that two vertices u and v are adjacent
in the background graph. All other notations are standard and can be found for
example in [1].

2. Graph Operations on Non-Coprime Graphs
The aim of this section is to study the non-coprime graph under two graph oper-
ations Cartesian and tensor product of graphs.

Definition 2.1. Let G1 and G2 be two graphs. The cartesian product of G1 and
G2 denoted G1×G2, is the graph with vertex set V (G1)×V (G2) and two distinct
vertices (u, v) and (u′, v′) are adjacent if u = u′ and v ∼ v′ or v = v′ and u ∼ u′.
The tensor product of G1 and G2 denoted G1 ⊗ G2, is the graph with vertex set
V (G1)× V (G2) and two distinct vertices (u, v) and (u′, v′) are adjacent if u ∼ u′

and v ∼ v′.

For an arbitrary group G, we use G∗ for the set of all non-identity elements of
G.

Lemma 2.2. Let G1 and G2 be two groups. Then ΠG1×ΠG2 and ΠG1⊗ΠG2 both
are proper spanning subgraphs of ΠG∗

1×G∗
2
which itself is the induced subgraph of

ΠG1×G2
on G∗1 ×G∗2.

Proof. It is obvious that V (ΠG1
×ΠG2

) = V (ΠG1
⊗ΠG2

) = V (ΠG∗
1×G∗

2
) = G∗1×G∗2.

Let (u, v) and (u′, v′) be two arbitrary vertices of ΠG1
× ΠG2

such that (u, v) ∼
(u′, v′). We claim that (u, v) ∼ (u′, v′) in ΠG1×G2

. We have u = u′ and v ∼ v′

or v = v′ and u ∼ u′. Without loss of generality, let u = u′ and v ∼ v′. Then
(|v|, |v′|) 6= 1. Hence there exists a positive integer d 6= 1 such that d||v| and d||v′|.
Therefore d||(u, v)| and d||(u′, v′)| which implies that they are adjacent in ΠG1×G2

.
The proof is similar for ΠG1

⊗ΠG2
.

The next corollary is an obvious result of the previous lemma:

Corollary 2.3. Let G1 and G2 be two group and H1 6 G1 and H2 6 G2 be
nontrivial subgroups of G1 and G2, respectively. Then

(i) ΠG1,H1
×ΠG2,H2

� ΠG∗
1×G∗

2 ,H
∗
1×H∗

2
; and

(ii) ΠG1,H1 ⊗ΠG2,H2 � ΠG∗
1×G∗

2 ,H
∗
1×H∗

2
.
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Remark 1. Let G1 and G2 be two group and (u, v) ∈ ΠG1
⊗ ΠG2

. Then by
definition, degΠG1

⊗ΠG2

(
(u, v)

)
= degΠG1

(u) + degΠG2
(v).

The following theorem is an immediate consequence of above observation:

Theorem 2.4. Let G1 and G2 be two groups of orders pk1 and qk2 , respectively,
where p and q are odd primes and k1 and k2 are positive integers. Then ΠG1

⊗ΠG2

is a spanning Eulerian subgraph of ΠG∗
1×G∗

2
.

Proof. By Remark ??, it is sufficient to prove that ΠG1
⊗ ΠG2

is Eulerian. Since
G1 and G2 are of prime power orders, their non-coprime graphs are complete. Let
(a, b) be an arbitrary vertex of ΠG1 ⊗ΠG2 . Then

degΠG1
⊗ΠG2

(
(u, v)

)
= degΠG1

(u) + degΠG2
(v)

= pk1 − 2 + qk2 − 2

= pk1 + qk2 − 4

and so the degree of every vertex of ΠG1 ⊗ ΠG2 is even. Therefore, the graph is
Eulerian.

3.The Non-Coprime Graph of Some Groups
Suppose α(G), ω(G), χ(G) and θ(G) denote the independence, clique, chromatic
and covering numbers of a graph G. In this section, we obtain some results on the
non-coprime graph of the Dihedral groups, Semi-dihedral groups and some other
groups. Let D2n = 〈a, b | an = b2 = 1, ba = a−1b〉 be the dihedral group of order
2n.

Theorem 3.1. If n is an odd natural number, then

(i) ω(ΠD2n
) = χ(ΠD2n

) = n;

(ii) θ(ΠD2n
) = θ(ΠZn

) + 1 =| π(Zn) | +1;

(iii) α(ΠD2n
) = θ(ΠD2n

).

Proof. (i) For 1 6 i, j 6 n we have |aib| = 2 and |aj | is odd such that (|aib|, |aj |)
= 1. Hence ΠD2n

is a graph with two components Π<a> and Kn. Therefore
ω(ΠD2n

) = χ(ΠD2n
) = n.

(ii) The minimum number of cliques that cover D2n is by (i) the minimum
number of cliques that cover Zn plus 1.
(iii) It is obvious by (ii).

Theorem 3.2. If n = 2k1pk2
2 · · · prkr where p1, . . . , pr are odd primes and k1, . . . , kr

are non-negative integers with k1 ≥ 1, then ΠD2n
is connected and

(i) diam(ΠD2n
) ≤ 2;
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(ii) θ(ΠD2n
) = θ(ΠZn

) = |π(Zn)|;

(iii) ω(ΠD2n
) = n(2k1−1)

2k1
+ n.

Proof. (i) D2n has an element of order 2p2p3 · · · pr such that all other vertices are
adjacent to which. Hence ΠD2n

is connected and diam(ΠD2n
) ≤ 2.

(ii) The minimum number of cliques that cover D2n is the minimum number of
cliques that cover Zn.
(iii) It is obvious by (ii).

Now let V8n be the group presented by 〈a , b | a2n = b4 = 1, ba = a−1b−1, b−1a =
a−1b〉, for n ≥ 1. We have the following results on its non-coprime graph:

Theorem 3.3. (i) ΠV8n
is a connected graph.

(ii) ΠV8n is Eulerian if and only if n is a power of 2.

(iii) ΠV8n
has an Eulerian spanning subgraph.

(iv) γ(V8n) = 1

Proof. (i) Since Π<a> is a subgraph of ΠV8n , the order of ΠV8n−<a> is even, two
vertices of order 2 are adjacent and ΠZ2n is connected, ΠV8n is connected.
(ii) Since ΠV

8(2k)
is a complete graph of odd order, the degree of each vertex is

even. So, the graph is Eulerian. If 8n = 2k1pk2
2 . . . pkr

r , then the number of vertices
that are divided by pi ((2 6 i 6 r)) is even. Hence the degree of pi is odd and
ΠV8n

is not Eulerian.
(iii) Each edge in ΠV8n

is on a triangle, so the graph has an Eulerian spanning
subgraph.
(iv) Since ΠV

8(2k)
has at least end− vertices, γ(ΠV8n) = 1.

Theorem 3.4. In the graph ΠV8n

1. If n = 2k then ω(ΠV8n) = 8n− 1;

2. If n = 2k1pk2
2 p

k3
3 · · · pkr

r where p2, . . . , pr are distinct odd prime numbers and
k1, . . . , kr are positive integers, then

ω(ΠV8n
) = 8n− pk2

2 p
k3
3 · · · pkr

r .

Proof. 1. If n = 2k, then 2 divides the order of each vertex. Hence ω(V8n) =
8n− 1.

2. If n = 2k1pk2
2 p

k3
3 . . . pkr

r , then number of vertices that pi divides their orders
but 2, p1, . . ., pi−1, pi+1, . . . pr don’t divides their orders is piki−1. Moreover,
the number of vertices that 2 does not divides their orders are pk2

2 p
k3
3 . . . pkr

r

and so the largest clique has even order. Thus, ω(V8n) = 8n− pk2
2 p

k3
3 . . . pkr

r .
Hence the result.
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Theorem 3.5. ΠV8n
is not planar graph.

Proof. Since there is at least 5 vertex of order that 2 divides them order so K5 6
ΠV8n

. Then ΠV8n
is not planar graph.

Theorem 3.6. Let U2nm =< a , b|a2n = bm = 1, aba−1 = b−1. If n =
2k1pk2

2 . . . pkr
r , m = 2l1ql22 . . . qlss and for 1 i ≤ r, pi are distinct prime and for

1 ≤ j ≤ s, qj are distinct prime and ki, lj are in Z. Then in U2nm group:

1. The number of elements that 2 divides them order is 2nm− nm

2k1+l1
;

2. The number of elements that pi divides them order and pi | n, pi | m, pi = qt

is 2nm− nm

pki
i

− nm

pki+lt
i

;

3. The number of elements that pi divides them order and pi | n, pi - m is

2nm− 2nm

pki
i

;

4. The number of elements that qj divides them order and qj - n, qj | m is
nm− nm

q
lj
j

.

Proof. We know in U2nm

(a) Order of aibj , that 1 ≤ i ≤ 2n, i is odd, 1 ≤ j ≤ m is 2
n

(i, n)
;

(b) Order of aibj , that 1 ≤ i ≤ 2n, i is even, 1 ≤ j ≤ m is [
2n

(i, 2n)
,

m

(j,m)
];

1. To obtain the number of element of even order we obtain the number of
elements that 2 not divides them order in section a and b and sum them and
obtain difference 2nm of it.

(a) The number of elements aibj , that 1 ≤ i ≤ 2n, i is odd, 1 ≤ j ≤ m and
2 - O(aibj) is zero.

(b) The number of elements aibj , that 1 ≤ i ≤ 2n, i is even, 1 ≤ j ≤ m
and 2 - O(aibj) is 2nm− (pk2

2 p
k3
3 . . . pkr

r )(ql22 q
l3
3 . . . qlss );

That pk2
2 p

k3
3 . . . pkr

r is the number of i that that for them
2n

(i, 2n)
is odd

and ql22 q
l3
3 . . . qlss is the number of j that that for them

m

(j,m)
is odd.

So the number of elements that 2 divides them order is 2nm− nm

2k1+l1
;

2. To obtain the number of elements that pi divides them order and pi | m, pi | n
obtain the number of element that pi not divides them order in section a and
b and sum them and obtain difference 2nm of it.
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(a) The number of elements aibj , that 1 ≤ i ≤ 2n, i is odd, 1 ≤ j ≤ m and
pi - O(aibj) is

n

pki
i

m;

(b) The number of elements aibj , that 1 ≤ i ≤ 2n, i is even, 1 ≤ j ≤ m,
pi - O(aibj) and pi = qt is

n

pki
i

.
m

plti
;

So the number of elements that pi divides them order is 2nm− nm
pki
i

− nm

pki+lt
i

;

3. To obtain the number of elements that pi divides them order and pi - m, pi | n
obtain the number of element that pi not divides them order in section a and
b and sum them and obtain difference 2nm of it.

(a) The number of elements aibj , that 1 ≤ i ≤ 2n, i is odd, 1 ≤ j ≤ m and
pi - O(aibj) is

n

pki
i

m;

(b) The number of elements aibj , that 1 ≤ i ≤ 2n, i is even, 1 ≤ j ≤ m,
pi - O(aibj) is

n

pki
i

m;

So number of elements that pi divides them order is 2nm− n

pki
i

m− n

pki
i

m =

2nm− 2nm

piki
;

4. To obtain the number of elements that pqj divides them order and qj | m, qj -
n obtain the number of element that qj not divides them order in section a
and b and sum them and obtain difference 2nm of it.

(a) The number of elements aibj , that 1 ≤ i ≤ 2n, i is odd, 1 ≤ j ≤ m and
qj - O(aibj) is nm;

(b) The number of elements aibj , that 1 ≤ i ≤ 2n, i is even, 1 ≤ j ≤ m,
qj - O(aibj) is

nm

pki
i

;

So number of elements that qj divides them order is 2nm − (nm +
nm

q
lj
j

) =

nm− nm

q
lj
j

.

Theorem 3.7. ΠU2nm is planar graph if and only if n < 2, m < 4 or n = 3,
m = 1.

Proof. By before theorem k5 is not subgraph of ΠU2nm
if and only if m = 1, n = 3

or m < 3, n < 2.



The Non-Coprime Graph of Finite Groups 115

Theorem 3.8. ΠU2nm

1. Is connected other than n = 1, m be odd.

2. If be connected has end− vertex

3. Is line graph when nm = pi and p is prime and i = 0, 1, 2, · · ·

Proof. 1. If n = 1 and m be odd then elements of even are only order of 2 and
other elements has odd order so there is not patd betven elements of order
2 and elements of even order and graph is not connected. In otherwise there
are elements of order [m,n] that is connect to all vertices of U2nm.

2. All elements of order [m,n] are end− vertex.

3. If nm = pi that p is prime, then in ΠU2nm
each vertex is at most in two

clique and ΠU2nm
is line graph.

Theorem 3.9. If n = 2k1pk2
2 . . . pkr

r , m = 2l1ql22 . . . qlss and for 1 i ≤ r, pi are
distinct prime and for 1 ≤ j ≤ s, qj are distinct prime and ki, lj are in Z. Then
in ΠU2nm

:
ω(Π2nm) ≥ max{t1, t2, t3, t4}

that t1=nm(2− 1

2k1+l1
), t2=2nm(1− 1

p
kr1
r1

) , t3 =2nm− nm(
1

pkt
t

+
1

p
kt+lj
t

), t4 =

nm − (1 − 1

q
ls1
s1

), pkt
t is greatest divisor of n that pt divides m, pt = qj and pkr1

r1

is greatest divisor ofn that pr1 , m not divides m and qls1s1 is greatest divisor ofm
that qs1 not divides n.

Proof. Enough in ΠU2nm
obtain the number of elements that divides them order

prime number that divides m, n or 2 divides them order and obtain maximum of
them that is max{t1, t2, t3, t4}. So proof complated.

Theorem 3.10. Other than n = m = 1 and n = 1 m = 3 in otherwise of n, m
ΠU2nm

have spaning Eulerian subgraph.

Proof. If ΠU2nm
be unconnected graph, then the number of vertex of even order

are larger than 2 and there are vertices that connect to vertex of odd order, so
sach edge belong to triangle. If ΠU2nm be connected graph, then hase at least 2
evd-vertex and each edge belong to triangle. Then ΠU2nm is Eulerian.

Theorem 3.11. Let T4n =< a , b|a2n = 1an = b2, b−1ab = a−1 >. Then ΠT4n

1. Is connected graph.

2. Is Eulerian if n = 2k and otherwise not Eulerian.
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3. Has Eulerian spanning subgraph.

4. γ(ΠT4n
) = 1

5. If n 6= 1 not planar graph.

Proof. 1. Since ΠZ2n
is subgraph of ΠT4n

and order of ΠT4n−Z2n
are 4 that join

to vertices of order even and ΠZ2n is connected, then ΠT4n is connected.

2. If n = 2k, then ΠT4n
is is complete graph of order 4n− 1 and degree of each

vertex is 4n−2 and is even, so ΠT4n is Eulerian. If n = pk1
1 p

k2
2 . . . pkr

r , degree
of vertex that order is pi equal

2n(pi
ki − 1)

piki
− 1

That is odd and ΠT4n
is not Eulerian.

2n(pi
ki − 1)

piki
− 1

3. ΠZ2n
has spanning Eulerian subgraph, then each edge of this sub graph is

in triangle. Eenouph that prove if e = v1v2 is edge where | v1 |= 4, | v2 |6= 4
or| v1 |=| v2 |= 4 then e be in triangle. If n = 1, then ΠT4n is complete
graph of order 3. If n 6= 1 there is at least 6 vertex of order 4 inΠT4n

and
if | v1 |= 4, | v2 |6= 4 then order of v2 is even, then there is edge between v2

and vertex of order 4 as v3, so v3 ∼ v1 ∼ v2 ∼ v3 and e is in triangle. If
| v1 |=| v2 |= 4 proof is similarity.

4. ΠT4n
has vertex of order 2n that adjoin to all vertices, then γ(ΠT4n

) = 1

5. Obviously ΠT4
is complete graph and planar. Ifn 6= 1 there is at least 6

vertex of order 4 so k5 6 ΠT4n
is not planar.

Theorem 3.12. If n = pk1
1 p

k2
2 . . . pkr

r where pi are distinct prime number and
ki ∈ Z+, then :

(i) If n be odd :
ω(ΠT4n

) = 3n

(ii) If n be even, i.e p1 = 2, then:

ω(ΠT4n
) = 4n− pk2

2 p
k3
3 . . . pkr

r

Proof. Since ΠZ2n is subgraph of ΠT4n and order of ΠT4n−Z2n are 4 that join to
vertices of order even, then clique of even vertices is largest clique of ΠT4n

, so
sufficient to obtainthe the number of even order.
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(i) The number of element of even order in Z2n is
2n(2− 1)

2
= n, then the

number of element of even order in ΠT4n
is 2n+ n = 3n

(ii) The number of element of even order in Z2n is
2n(2k1+1 − 1)

2k1+1
, then The

number of element of even order in ΠT4n is

ω(ΠT4n
) = 2n+

2n(2k1+1 − 1)

2k1+1
= 2n(2− 1

2k1+1
) = 4n− pk2

2 p
k3
3 . . . pkr

r

Theorem 3.13.
χ(ΠT4n

) = ω(ΠT4n
)

Proof. Let n be odd, then large clique contain ω(ΠT4n
) = 3n vertices and remain-

ing vertices that are n− 1 and odd order coloring with 3n color. If n be even then
large clique contain ω(ΠT4n) = 4n−pk2

2 p
k3
3 . . . pkr

r vertices where n = 2k1pk2
2 . . . pkr

r

and pk2
2 p

k3
3 . . . pkr

r < n, so

4n− pk2
2 p

k3
3 . . . pkr

r > 3n

and remaining vertices that are at least n−2 and coloring with ω(ΠT4n) color and

χ(ΠT4n
) = ω(ΠT4n

)

Theorem 3.14. In graph ΠT4n :

1. diam(ΠT4n) 6 2

2. ΠT4n is line graph if and only if n = pk or n = 2k or n = 2kpk where p is
prime.

3. If n = pk1
1 p

k2
2 . . . pkr

r the number of ΠT4n
end-vertices is:

(a) If n be odd:
(pk1

1 − 1)(pk2
2 − 1) . . . (pkr

r − 1)

(b) If n be even i.e. p1 = 2:

(2k1+1 − 1)(pk2
2 − 1) . . . (pkr

r − 1)

Proof. 1. Since diamm(ΠZ2n) 6 2, then by definition of ΠT4n , diam(ΠT4n) 6 2.

2. Edge set of ΠT4n can be partitioned in to a set of clique with the property
that any vertex lies in at most two clique if and only if n be n = pk or n = 2k

or n = 2kpk by theorem 1.7.2 of [3] proof complete.
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3. The number of ΠT4n
end-vertices is equal with the number of ΠZ2n

end-
vertices that is number of vertices that p1p2 · · · pr divides them order and
is (pk1

1 − 1)(pk2
2 − 1) . . . (pkr

r − 1) when n is odd and is (2k1+1 − 1)(pk2
2 −

1) . . . (pkr
r − 1) when n is even.

Theorem 3.15. Let SD8n =< a , b|a4n = b2 = 1, bab = a2n−1. Then ΠSD8n

1. Is connected graph.

2. If n = 2k (0 6 k ∈ Z) ΠSD8n
is Eulerian and otherwise is not Eulerian

graph

3. ΠV8n has Eulerian spanning subgraph.

4. γ(V8n) = 1

Proof. Since ΠZ4n
is sub graph of ΠSD8n

and order of ΠSD8n−Z4n
vertex are

even(2n vertex of order 2 and 2n vertex of order 4) that join to vertices of even
order, then this graph has specifications of ΠZ4n

Theorem 3.16. Let n = pk1
1 p

k2
2 · · · pkr

r , then

1. If n is odd
ω(ΠSD8n

) = 7n

2. If n is even i.e. p1 = 2

ω(ΠSD8n
) = 8n− pk2

2 p
k3
3 · · · pkr

r

Proof. The number of element s of odd order in ΠSD8n is pk2
2 · · · pkr

r − 1. Then
clique number of ΠSD8n is the number of vertices that order is even that is

8n− 1− pk2
2 p

k3
3 · · · pkr

r − 1

then
ω(ΠSD8n

) = 8n− pk2
2 p

k3
3 · · · pkr

r

Corollary 3.17.
χ(ΠSD8n

) = ω(ΠSD8n
)

Proof. By before theorem 7n ≤ ω(ΠSD8n
), then vertices that remaining of largest

clique are coloring with 7n color, then

χ(ΠSD8n) = ω(ΠSD8n)
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