On the Entropy Rate of a Random Walk on *t*-Designs

Reza Kahkeshani [⋆]

Abstract

In this paper, a random walk on *t*-designs are considered. We assign a weight to each block and walk randomly on the vertices with a probability proportional to the weight of blocks. This stochastic process is a Markov chain. We obtain a stationary distribution for this process and compute its entropy rate. It is seen that, when the blocks have the same weight, the uniform distribution on the vertices is a stationary distribution and the entropy rate depends only on the number of vertices.

Keywords: random walk, Markov chain, design, entropy rate, stationary distribution.

2010 Mathematics Subject Classification: Primary 60J10, Secondary 60G50, 05B99, 94A17.

How to cite this article

R. Kahkeshani, On the Entropy Rate of a Random Walk on *t*-Designs, *Math. Interdisc. Res.* x (202x) xx-yy.

1. Introduction

Let X be a discrete random variable with alphabet $\mathcal X$ and probability mass function $p(x) = \Pr{X = x}$, $x \in \mathcal{X}$. The entropy $H(X)$ of X is defined as

$$
H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x),
$$

where logarithm is to the base 2 and entropy is expressed in bits. Here, the convention $0 \log 0 = 0$ will be used. The entropy $H(X)$ is a measure of the uncertainty of *X* and moreover, it is a measure of the amount of information required on the

DOI: 10.22052/mir.2020.233084.1214

*⃝*c 2020 University of Kashan

This work is licensed under the Creative Commons Attribution 4.0 International License.

*[⋆]*Corresponding author (E-mail: kahkeshanireza@kashanu.ac.ir)

Academic Editor: Mohammad Reza Darafsheh

Received 28 May 2020, Accepted 2 August 2020

average to describe X . Let (X, Y) be a pair of discrete random variables with a joint distribution $p(x, y)$, $(x, y) \in \mathcal{X} \times \mathcal{Y}$. The joint entropy $H(X, Y)$ is defined by

$$
H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y).
$$

Similarly, the entropy of a collection of random variables, such as $H(X_1, X_2, \ldots,$ X_n , is defined.

A stochastic process $\{X_i\}_{i\in\mathbb{N}}$ can be defined as an indexed sequence of random variables. This process is characterizied by the probability mass functions

$$
Pr{(X_1, X_2, \ldots, X_n) = (x_1, x_2, \ldots, x_n)} = p(x_1, x_2, \ldots, x_n),
$$

where $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ and $n \in \mathbb{N}$. This process is called to be stationary if $Pr\{(X_1, X_2, \ldots, X_n) = (x_1, x_2, \ldots, x_n)\}$ is equal to $Pr\{(X_{l+1}, X_{l+2}, \ldots, X_{l+n}) =$ (x_1, x_2, \ldots, x_n) , for all $x_1, x_2, \ldots, x_n \in \mathcal{X}$ and every shift *l*. A Markov chain is a stochastic process $\{X_i\}_{i\in\mathbb{N}}$ such that $\Pr\{X_{n+1} = x_{n+1}|X_n = x_n, X_{n-1} = x_{n+1}\}$ $x_{n-1},...,X_1=x_1$ is equal to $Pr{X_{n+1}=x_{n+1}|X_n=x_n}$, for all $x_1, x_2,...,x_{n+1}$ in *X*. A Markov chain ${X_i}_{i \in \mathbb{N}}$ is called to be time invariant if $Pr{X_{n+1} = b | X_n}$ a [}] = Pr{*X*₂ = *b*|*X*₁ = *a*[}], for all $n \in \mathbb{N}$ and $a, b \in \mathcal{X}$. It is easy to see that a time invariant Markov chain with alphabet $\mathcal{X} = \{1, 2, \ldots, m\}$ can be characterized by an initial state and a probability transition matrix $P = (p_{ij})$, where p_{ij} $Pr{X_{n+1} = j | X_n = i}$. A distribution μ on $\mathcal X$ is said to be stationary if $\mu P = P$. In other words, μ is a distribution on the states such that the distributions at the successive times are the same. The entropy rate of a stochastic process $\{X_i\}_{i\in\mathbb{N}}$ is

$$
H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n),
$$

when the limit exists. Also, a related quantity for entropy rate is defined by

$$
H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \dots, X_1),
$$

when the limit exists. These two quantities correspond to different notions. It can be shown that if $\{X_i\}_{i\in\mathbb{N}}$ is a stationary Markov chain then $H(\mathcal{X}) = H'(\mathcal{X}) =$ $H(X_2|X_1)$. See [2, 6, 7] for more details and examples.

In this paper, motivated by a random walk on a weighted graph [2], a random walk on *t*-designs are considered. We assign a weight to each block and walk randomly on the vertices with a probability proportional to the weight of blocks. This stochastic process is a Markov chain. We obtain a stationary distribution for this process and compute its entropy rate. It is seen that, when the blocks have the same weight, the uniform distribution on the vertices is a stationary distribution and the entropy rate depends only on the number of vertices. For more information and some new results on random walks, entropy rates and their applications, please see [3, 5, 8].

2. *t*-Designs

Let $\mathcal{S} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be an incidence structure which consists of point set \mathcal{P} , block set *B* and an incidence relation $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$. The elements of \mathcal{I} are called flags and the notation *pIB* means that $(p, B) \in \mathcal{I}$. A block $B \in \mathcal{B}$ is sometimes identified with the set of points *p* incident with it. Here, $\mathcal I$ is in fact the membership relation \in . If we replace each block of *S* by its complement then we obtain the complement of the structure, denoted by \overline{S} . The dual of $S = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ is the incidence structure $S^{\perp} = (\mathcal{B}, \mathcal{P}, \mathcal{I}^{\perp})$, where $B\mathcal{I}^{\perp}p$ if and only if $p\mathcal{I}B$. The incidence matrix of *S* is a matrix *M* of size $|\mathcal{P}| \times |\mathcal{B}|$ whose rows and columns are labled by points and blocks, respectively, such that the entry (p, B) is 1 if and only if p is incident with *B*, and 0 otherwise. The incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ is called a t - (v, k, λ) design if $|\mathcal{P}| = v$, $|B| = k$ for any $B \in \mathcal{B}$, and every t distinct points are incident with precisely λ blocks. It is known that the number of blocks, denoted by b , is equal to $\lambda \binom{v}{t} \binom{k}{t}$. The design D is called trivial if B consists of all the *k*-subsets of *P*. If $v = b$ then *D* is called symmetric. It is well-known that the number of blocks incident with *s* points $(s \leq t)$, denoted by λ_s , is independent of the set and $\lambda_s = \lambda {v-s \choose t-s} / {k-s \choose t-s}$. Therefore, every $t-(v,k,\lambda)$ design is also an $s-(v,k,\lambda_s)$ design, where $s \leq t$. The complement of a $t-(v, k, \lambda)$ design D is also a design $\overline{\mathcal{D}}$ with parameters t - $(v, v - k, \overline{\lambda})$, where $\overline{\lambda} = \sum_{s=0}^{t} (-1)^s {t \choose s} \lambda_s$. The number of blocks incident with any point, λ_1 , is also denoted by *r* and called the replication number. If *D* is a *t*- (v, k, λ) design then \mathcal{D}^{\top} is a design with *b* points such that its block size is r . If M is the incidence matrix of D then the incidence matrix of \mathcal{D}^{\top} is M^{\top} . It can be shown that if \mathcal{D} is a 2- (v, k, λ) design then $bk = vr$ and $\lambda(v-1) = r(k-1)$. For more details, see [1, 4].

3. Results

Let the incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a t - (v, k, λ) design with the vertex set $\{1, 2, \ldots, v\}$. To each block $B \in \mathcal{B}$, we assign a weight $\omega(B) \geq 0$ in R and set

$$
\omega = \sum_{B \in \mathcal{B}} \omega(B),
$$

\n
$$
\omega_i = \sum_{i \in B \in \mathcal{B}} \omega(B),
$$

\n
$$
\omega_{ij} = \sum_{i,j \in B \in \mathcal{B}} \omega(B),
$$

where $i, j \in \mathcal{P}$ and $i \neq j$. In other words, ω_i is the sum of the weights of all blocks containing the vertex *i* and ω_{ij} is also the sum of the weights of all blocks containing the points i and j . Note that for any vertex i , we have

$$
\sum_{j \in \mathcal{P}} \omega_{ij} = \sum_{j \in \mathcal{P}} \sum_{B \in \mathcal{B}} \omega(B)
$$

$$
= \sum_{\substack{j \in \mathcal{P} \\ i \in B}} \sum_{\substack{j \in \mathcal{B} \\ j \in \mathcal{P} \\ i \in B}} \omega(B)
$$

$$
= \sum_{\substack{B \in \mathcal{B} \\ i \in B \\ i \in B}} (k - 1)\omega(B)
$$

$$
= (k - 1)\omega_i.
$$

A random walk $\{X_n\}_{n=1}^{\infty}$ in D is a sequence of points of D in such a way that $X_n = i$ and $X_{n+1} = j$ if there exists a block *B* containing the points *i* and *j*. Moreover, we walk from *i* to *j* with the probability $p_{ij} = \omega_{ij}/((k-1)\omega_i)$. As it is seen, we walk randomly from the vertex i to the vertex j with a probability proportional to the weight of the blocks containing *i* and *j*, and the values $\{p_{ij}\}_{1 \leq j \leq v}$ form a mass probability function. By definition, this stochastic process is a Markov chain with the probability transition matrix $P = (p_{ij})_{v \times v}$. Set $\mu = (\mu_1, \mu_2, \dots, \mu_v)$, where $\mu_i = \omega_i / (k\omega)$ for any $1 \leq i \leq v$. Since

$$
\sum_{i=1}^{v} \mu_i = \sum_{i=1}^{v} \frac{\omega_i}{k\omega}
$$

= $\frac{1}{k\omega} \sum_{i=1}^{v} \sum_{i \in B \in \mathcal{B}} \omega(B)$
= $\frac{1}{k\omega} \sum_{B \in \mathcal{B}} \sum_{\substack{i \in \mathcal{P} \\ i \in B \in \mathcal{B}}} \omega(B)$
= $\frac{1}{k\omega} \sum_{B \in \mathcal{B}} k\omega(B)$
= 1,

 μ is a probability distribution on the points *P*. Moreover, for any $1 \leq j \leq v$,

$$
\sum_{l=1}^{v} \mu_l p_{lj} = \sum_{l=1}^{v} \frac{\omega_l}{k\omega} \frac{\omega_{lj}}{(k-1)\omega_l}
$$

$$
= \frac{1}{k(k-1)\omega} \sum_{l=1}^{v} \omega_{lj}
$$

$$
= \frac{\omega_j}{k\omega}
$$

$$
= \mu_j.
$$

Therefore, μ is also a stationary distribution. Now, the entropy rate of this process is

$$
H(\mathcal{X}) = H(X_2|X_1)
$$

\n
$$
= -\sum_{i=1}^{v} \mu_i \sum_{j=1}^{v} p_{ij} \log p_{ij}
$$

\n
$$
= -\sum_{i=1}^{v} \frac{\omega_i}{k\omega} \sum_{j=1}^{v} \frac{\omega_{ij}}{(k-1)\omega_i} \log \frac{\omega_{ij}}{(k-1)\omega_i}
$$

\n
$$
= -\sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{ij}}{(k-1)\omega_i}
$$

\n
$$
= -\sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{ij}}{k(k-1)\omega} + \sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_i}{k\omega}
$$

\n
$$
= -\sum_{i=1}^{v} \sum_{j=1}^{v} \frac{\omega_{ij}}{k(k-1)\omega} \log \frac{\omega_{ij}}{k(k-1)\omega} + \sum_{i=1}^{v} \frac{\omega_i}{k\omega} \log \frac{\omega_i}{k\omega}
$$

\n
$$
= H\left(\cdots, \frac{\omega_{ij}}{k(k-1)\omega}, \cdots\right) - H\left(\cdots, \frac{\omega_i}{k\omega}, \cdots\right).
$$

So, the following theorem is implied:

Theorem 3.1. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a t - (v, k, λ) design. Assign a non-negative real number $\omega(B)$ to each block $B \in \mathcal{B}$ and set

$$
\omega = \sum_{B \in \mathcal{B}} \omega(B),
$$

$$
\omega_i = \sum_{i \in B \in \mathcal{B}} \omega(B),
$$

$$
\omega_{ij} = \sum_{i,j \in B \in \mathcal{B}} \omega(B),
$$

for any $i \neq j \in \mathcal{P}$. Let $\{X_n\}_{n=1}^{\infty}$ be a random walk on the points of \mathcal{D} with the probabiity transition matrix $P = (p_{ij})_{v \times v}$, where $p_{ij} = \omega_{ij}/((k-1)\omega_i)$. Set $\mu_i = \omega_i / (k\omega)$, where $1 \leq i \leq v$. Then, $\{X_n\}_{n=1}^{\infty}$ is a Markov chain with the stationary distribution $\mu = (\mu_1, \mu_2, \dots, \mu_v)$ and the entropy rate

$$
H(\mathcal{X}) = H\left(\cdots, \frac{\omega_{ij}}{k(k-1)\omega}, \cdots\right) - H\left(\cdots, \frac{\omega_i}{k\omega}, \cdots\right).
$$

Note that if all the blocks have equal weight then $p_{ij} = \lambda_2/(r(k-1))$ and $\mu_i = r/(kb) = 1/v$. Also,

$$
\frac{\omega_i}{k\omega} = \frac{r}{kb} = \frac{1}{v}
$$

6 R. Kahkeshani

and

$$
\frac{\omega_{ij}}{k(k-1)\omega} = \frac{\lambda_2}{k(k-1)b} = \frac{1}{v(v-1)}.
$$

Hence, in this case, the uniform distribution on P is a stationary distribution and the entropy rate is

$$
H(\mathcal{X}) = H(\cdots, \frac{1}{v(v-1)}, \cdots) - H(\cdots, \frac{1}{v}, \cdots)
$$

$$
= \log(v-1).
$$

Acknowledgement. The author would like to thank the referee for his/her suggestions and comments. This work is partially supported by the University of Kashan under grant number 985983/1.

Conflicts of Interest. The author declares that there are no conflicts of interest regarding the publication of this article.

References

- [1] T. Beth, D. Jungnickel and H. Lenz, *Design Theory*, Volume I, 2nd edition, Cambridge University Press, Cambridge, 1999.
- [2] T. M. Cover and J. A. Thomas, *Elements of Information Theory*, 2nd edition, John Wiley & Sons, Inc., New Jersey, 2006.
- [3] R. Li and W. Heidrich, Hierarchical and view-invariant light field segmentation by maximizing entropy rate on 4D ray graphs, *ACM Trans. Graph.* 38 (6) (2019) Article 167.
- [4] J. H. van Lint and R. M. Wilson, *A Course in Combinatorics*, 2nd edition, Cambridge University Press, Cambridge, 2001.
- [5] H. Ni and X. Niu, Agglomerative oversegmentation using dual similarity and enropy rate, *Pattern Recogn.* 93 (2019) 324 *−* 336.
- [6] N. Privault, *Understanding Markov Chains: Examples and Applications*, 2nd edition, Springer, Singapore, 2018.
- [7] S. M. Ross, *Stochastic Processes*, 2nd edition, John Wiley & Sons, Inc., New York, 1996.
- [8] R. J. H. Ross, C. Strandkvist and W. Fontana, Compressibility of random walker trajectories on growing networks, *Phys. Lett. A* 383 (17) (2019) 2028*−* 2032.

Reza Kahkeshani Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, I. R. Iran e-mail: kahkeshanireza@kashanu.ac.ir