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Abstract

The purpose of this paper is to extend the mixture factor analyzers (MFA)
model to handle missing and heavy-tailed data. In this model, the dis-
tribution of factors loading and errors arise from the multivariate normal
mean-variance mixture of the Birnbaum-Saunders (NMVBS) distribution.
By using the structures covariance matrix, we introduce parsimonious MFA
based on NMVBS distribution. An Expectation Maximization (EM)-type al-
gorithm is developed for parameter estimation. Simulations study and real
data sets represent the efficiency and performance of the proposed model.
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1. Introduction

Model-based clustering is a useful method to find proper groups for datasets with
unlabeled observations. For this issue, the finite mixture model is used to fit
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the observation and specified the data classification. The multivariate normal
mixture models for clustering are discussed in [1]. Originally, a finite mixture
model based on multivariate normal distribution is sensitive to skewed and heavy-
tailed datasets. Andrews and McNicholas [2] considered multivariate t-distribution
replacing normal distribution for handling heavy-tail data. Afterward, Browne and
McNicholas [3] proposed a finite mixture model based on generalized hyperbolic
distribution for heavy-tail and skewed data. Extensive details for model-based
clustering are proposed by [4].

When data have high dimensions, the model-based clustering may produce bias
and inaccurate inferences for estimating parameters and group datasets. This bias
and inaccurate inferences are more estimates of the component covariance than
other parameters. To overcome this problem, MFA was proposed by Ghahramani
and Hinton [5] to reduce the number of model-free parameters. Although the
initial MFAmodel [5] assumed the component factors and errors of the multivariate
normal distribution as a mixture component, the interest in skewed and heavily-
tailed distributions has increasingly been considered a robust framework for data
analysis with incomplete data. One can refer to [6–10] a few recently published
contributions.

The problem of multimodal data is ubiquitous in many scientific fields and
should be addressed appropriately before engaging learning algorithms. To extend
the MFA model, four issues are always of interest: (i) theoretical convenience and
mathematical properties, (ii) computational tractability such as easy calibration of
data and speed of the importation, (iii) the flexibility and robustness in analyzing
strongly skewed distributions with outliers, and (iv) reduction in the number of
parameters that must be estimated. In this regard, the family of skew-normal
[11] distributions is one of the baseline platforms that play a subnational role
in constructing efficient MFA. For instance, the mixture of skew-normal factor
analysis models was proposed in [12]. Lin et al. [7] introduced the mixture of skew-t
factor analysis models as an extension of the mixture of skew-normal factor analysis
models for handling heavy-tailed asymmetric datasets. Wei et al. [8] discussed the
issue of MFA as well as another class of skew distribution by considering the class of
normal mean-variance distributions. MFA has a covariance component with Σi =
BiB

>
i +Di structure where the factor loading matrix Bi is a p×q matrix and the

noise matrix Di is diagonal. By introducing MFA, McNicholas and Murphy [13]
considered eight structures of covariance matrix by constrained or unconstrained
Bi and Di. In addition, Murray et al. [6, 14] introduced a parsimonious mixture
factor analysis based on the skew-t distribution as an extension of the parsimonious
MFA model based on the class of normal mean-variance distributions for handling
heavy-tailed asymmetric datasets.

Recently, Hashemi et al. [15] extended the original factor analysis to formu-
late a new class of skewed models as an alternative to the baseline factor analy-
sis model. Calling the normal mean-variance Birnbaum-Saunders factor analysis
(NMVBSFA) model, Hashemi et al. [15] showed that the NMVBSFA not only in-
herits mathematical and computational aspects of the skew-normal factor analysis
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and skew-t factor analysis model but also it can provide a flexible platform for
statistical analysis. Hashemi et al. [16] used the mean-mixture normal distribu-
tion for proposing a new factor analyzer model. Through a simulation study, they
showed that some special cases of mean-mixture normal factor analysis outper-
form the skew-t factor analysis of large amounts of degrees of freedom. Numerical
results of [16] confirmed that the calibration of mean-mixture normal distribution
of the data is much faster than some existing models. Therefore, the clustering of
multivariate data with high dimensions is one of the main reasons for the intro-
duction of the finite mixture NMVBSFA model. Another of the main reasons is to
reduce the free parameters model by introducing 8 parsimonious structures based
on McNicholas and Murphy [13].

In this contribution, we advocate the use of NMVBS distribution as the compo-
nent factors and errors in MFA in an additional eight structures for the covariance
matrix. Referring to the properties of the NMVBS distributions and NMVBSFA
models discussed in the next section, it is demonstrated that the new mixture
factor analysis based on the NMVBSFA model is attractive as it can simultane-
ously model the skewness and heavy tails. The model parameters are estimated
based on the development of an EM-type [17] algorithm using a hierarchical rep-
resentation. One of the serious concerns related to multivariate mixture models
is the potential over-parameterization which is well documented in the work of
McNicholas and Murphy [13] on parsimonious Gaussian and t-mixtures models.
Following McNicholas and Murphy [13], we will present the ways to address this
deficiency by offering eigen-decomposition of the component covariance matrices.
Simulation studies for assessing the performance and computational tractability
of the proposed methodology are carried out. Finally, real-world data analyses are
presented to support the usefulness of the new model.

The layout of this paper is as follows: In Section 2, we recall the NMVBSFA
models. Section 3 addresses the estimation and computational framework of the
NMVBS mixture. For parameter estimation, we extend an EM-type algorithm of
the Expectation Conditional Maximization (ECM), represented by [18]. Mean-
while, we compute the standard errors for the NMVBSFA mixture. In Sections 5
and 6, the proposed methodology is demonstrated with extensive application of a
real data set and simulation studies.

2. Statistical models

This section reviews the formulation and some properties of the NMVBS distri-
bution to describe the motivation and parameter of estimation. NMVBS distri-
bution followed by a p-dimensional random vector Y ∈ Rp, denoted by Y ∼
NMVBSp(µ,Σ,λ, α), with location, scale and shape parameters µ ∈ Rp, Σ ∈
Rp×p and λ ∈ Rp, respectively, can be depicted as:

Y
d
= µ+Wλ+

√
WX, (1)
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in whichX depicts a p-dimensional normal random vector with Np(0,Σ) represen-
tation,W a positive random variable, independent ofX, with Birnbaum-Saunders
distribution [19] with BS(α, β = 1) representation and d

= shows the identically dis-
tribution. The probability density function (pdf) of W is given by:

f(w;α, β) = A(w,α, β)φ(a(w,α, β)), w > 0, α > 0, β > 0,

where φ(·) is the pdf of the standard normal distribution, a(w,α, β) = (
√
w/β −√

β/w)/α, and A(w,α, β) is the derivative of a(w,α, β) concerning w. Specially,
the NMVBSp(µ,Σ,λ, α) distributed random vector Y in (1) indicated hierarchi-
cally as:

Y |W = w ∼ Np(µ+ wλ, wΣ) and W ∼ BS(α, 1). (2)

The pdf of Y is according to

fNMVBS(y;µ,λ,Σ, α)

=
1

2
fGH

(
y;µ,λ,Σ,

1

2
,

1

α2
,

1

α2

)
+

1

2
fGH

(
y;µ,λ,Σ,−1

2
,

1

α2
,

1

α2

)
, (3)

where fGH is the pdf of GH distribution that represent in Appendix A [20]. It is
clear that

E(Y ) = µ+ E(W )λ and Cov(Y ) = E(W )Σ + V ar(W )λλ>.

Proposition 2.1. Let Y and W be the random vector and variable distributed by
NMVBS p(µ,Σ,λ, α) and BS(α, 1), respectively. Then, for any y ∈ Rp, the pdf
of W given Y = y is represented by

f(w | y) = π(y)fGIG

(
w;

1− p
2

, χ(y,µ,Σ, α), ψ(λ,Σ, α)

)
+(1− π(y))fGIG

(
w;
−1− p

2
, χ(y,µ,Σ, α), ψ(λ,Σ, α)

)
, (4)

where fGIG(.) is the pdf of generalized inverse Gaussian (GIG) distribution that
represent in Appendix A,

χ(y,µ,Σ, α) = (y − µ)>Σ−1(y − µ) + α−2,

ψ(λ,Σ, α) = λ>Σ−1λ+ α−2,

π(y) =
fGHp

(
y;µ,λ,Σ, 0.5, α−2, α−2

)
fGHp (y;µ,λ,Σ, 0.5, α−2, α−2) + fGHp (y;µ,λ,Σ,−0.5, α−2, α−2)

. (5)
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Furthermore, for r = ±1,±2, . . .

E(W r | y) =

(
χ(y,µ,Σ, α)

ψ(λ,Σ, α)

)r/2{
π(y)

K(1−p)/2+r

(√
ψ(λ,Σ, α)χ(y,µ,Σ, α)

)
K(1−p)/2

(√
ψ(λ,Σ, α)χ(y,µ,Σ, α)

)
+ (1− π(y))

K−(1+p)/2+r

(√
ψ(λ,Σ, α)χ(y,µ,Σ, α)

)
K−(1+p)/2

(√
ψ(λ,Σ, α)χ(y,µ,Σ, α)

) }
. (6)

where Kκ(·) denotes the modified Bessel function of the third kind of order κ.

Proof. See Hahsemi et al. [15].

3. The mixture of NMVBSFA model

3.1 The formulation of the model
Consider Yj is a p-variate random vector of the jth individual for j = 1, . . . , n. In
the finite mixture modeling, it is assumed that observations are categorized into g
classes. Therefore, the set of unobservable allocation vectors Zj =

(
Z1j , . . . , Zgj

)>
for j = 1, . . . , n is usually defined for the sake of investigating statistical properties
and computational purposes. Here, the elements of Zj are the binary outcomes
where Zij = 1 if the jth observation belongs to the ith component and otherwise
Zij = 0. It follows the point that Zj has a one-trail multinational distribution
with probabilities (π1, . . . , πg), denoted by M(1;π1, . . . , πg). In the mixture of
NMVBSFA, we assume that each observation Yj can be shown as:

Yj = µi +BiUij + εij with probability πi (i = 1, . . . , g), (7)

where[
Uij
εij

]
|Zij = 1 ∼ NMVBSq+p

([
−aαi

Λ
−1/2
i λi

0

]
,

[
Λ−1
i 0
0 Di

]
,

[
Λ
−1/2
i λi

0

]
, αi

)
,

(8)

Di is a positive diagonal matrix and π1 + . . .+πg = 1. Bear in mind that, by con-
sidering aαi

= E(Wj |Zij = 1) and bαi
= Var(Wj |Zij = 1), Λi = aαi

Iq + bαi
λiλ

>
i ,

the mixture of NMVBSFA model (8) performs E(Uij) = 0 and Cov(Uij) = Iq. By
McNicholas and Murphy [13], we fulfill an eight-member parsimonious mixture of
NMVBSFA (PM-NMVBSFA) similar to eight parsimonious mixture of Gaussian
factor analyzer (Table 1). By taking into account two representations (2) and (8),
the hierarchical representation of the postulated factor analyzer can be written as:

Yj |Wj = wj , Zij = 1 ∼ Np(µi − aαiBiΛ
−1/2
i λi + wjBiΛ

−1/2
i λi, wjΣi),

Wj |Zij = 1 ∼ BS(αi, 1), with probability πi. (9)
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Table 1: Nomination and covariance structures for the parsimonious mixture of
Gaussian factor analyzer [13].

Model Bi = B Di = D Di = diIp number of parameters
CCC Constrained Constrained Constrained [pq − q(q − 1)/2] + 1
CCU Constrained Constrained Unconstrained [pq − q(q − 1)/2] + p
CUC Constrained Unconstrained Constrained [pq − q(q − 1)/2] + g
CUU Constrained Unconstrained Unconstrained [pq − q(q − 1)/2] + gp
UCC Unconstrained Constrained Constrained g[pq − q(q − 1)/2] + 1
UCU Unconstrained Constrained Unconstrained g[pq − q(q − 1)/2] + p
UUC Unconstrained Unconstrained Constrained g[pq − q(q − 1)/2] + g
UUU Unconstrained Unconstrained Unconstrained g[pq − q(q − 1)/2] + gp

Thus, the PM-NMVBSFA model has the pdf of Yj :

f(yj ; Θ) =

g∑
i=1

πifNMVBS(yj ,µi − aαi
ηi,Σi,ηi, αi), (10)

where Σi = BiΛ
−1
i B

>
i +Di, ηi = BiΛ

−1/2
i λi, and for π = (π1, . . . , πg−1) and

θi = (µi,λi,Bi,Di, αi), the parameter set of the model is Θ = (π,θ1, . . . ,θg).
Alternatively, using incomplete data, the PM-NMVBSFA can be presented as:

Yj | Zij = 1 ∼ NMVBSp(µi − aαi
ηi,Σi,ηi, αi), (11)

Zj ∼M(1;π1, . . . , πg).

To facilitate mathematical and computational procedures, the scaling transforma-
tions

B̃i
∆
= BiΛ

−1/2
i and Ũij

∆
= Λ

1/2
i Uij , (12)

are considered on the matrices of factor loadings Bi and the common factors
Uij . Therefore, the high-level representation of the PM-NMVBSFA model can
alternatively be written as:

Yj | (ũij , wj , Zij = 1) ∼ Np(µi + B̃iũij , wjDi),

Ũij | (wj , Zij = 1) ∼ Nq
(
(wj − aαi

)λi, wjIq
)
,

Wj | Zij = 1 ∼ BS(αi, 1),

Zj ∼M(1;π1, . . . , πg). (13)

Proposition 3.1. Under conceptualized representation (13), we have:

i) The distribution of common factors Ũij given (yj , wj , Zij = 1) is Nq(qij , wjCi),
where

qij = Ci {ξij + λi(wj − aαi
)} , ξij = B̃>i D

−1
i (yj − µi),

Ci = (Iq + B̃>i D
−1
i B̃i)

−1.
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ii) The conditional distribution of Wj given (yj , Zij = 1) is obtained as:

f(wj | yj , Zij = 1) =τijfGIG

(
wj ;

1− p
2

, χij , ψi

)
+ (1− τij)fGIG

(
wj ;
−1− p

2
, χij , ψi

)
, (14)

where

χij = (yj − µi + aαiηi)
>Σ−1(yj − µi + aαiηi) + α−2

i , ψi = η
>
i Σ−1

i ηi + α−2
i ,

τij =
fGHp

(
yj ;µi − aαiηi,ηi,Σi, 0.5, α

−2
i , α−2

i

)
fGHp

(
yj ;µi − aαiηi,ηi,Σi, 0.5, α

−2
i , α−2

i

)
+ fGHp

(
yj ;µi − aαiηi,ηi,Σi,−0.5, α−2

i , α−2
i

) ,
iii) Consequently forms (i) and (ii), we have

E(W r
j | yj) =

(
χij
ψi

)r/2{K(1−p)/2+r

(√
ψiχij

)
K(1−p)/2

(√
ψiχij

)
+
K−(1+p)/2+r

(√
ψiχij

)
K−(1+p)/2

(√
ψiχij

) }, r = ±1,

E(Ũij | yj) =Ci {ξij + λi (E(Wj | yj)− aαi)} ,
E(W−1

j Ũij | yj) =Ci
{
ξijE(W−1

j | yj) + λi
(
1− aαi

E(W−1
j | yj)

)}
,

and

E(W−1
j ŨijŨ

>
ij | yj) =

{
E(W−1

j Ũij | yj)ξ>ij +
[
E(Ũij | yj)

− aαiE(W−1
j Ũij | yj)

]
λ>i + Iq

}
Ci. (15)

Proof. See Hahsemi et al. [15].

3.2 Identifiability issue

Before developing an EM-type algorithm for the ML parameter estimation of (7),
it is important to examine the model identifiability. A finite mixture model is
identifiable if two sets of parameters cannot yield the same mixture distribution,
that is, f(y; Θ1) = f(y; Θ2) for all y ∈ Rp implying that Θ1 = Θ2. Naderi et al.
[21] proved the identifiability of finite mixtures of NMVBS distributions based on
earlier work by Browne and McNicholas [3]. By using Naderi et al. [21], we provide
a sufficient condition for the identifiability of the PM-NMVBSFA (7) in Theorem
3.2 for the most general UUU structure. Based on Hashemi et al. [15], we add
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the restriction that B>i D
−1
i Bi is a diagonal matrix with its elements arranged

in descending order of magnitude. A sufficient condition for the identifiability of
class C is established where

C =
{
f(y; Θ) : f(y; Θ) =

g∑
i=1

πifNMVBS(yj ,µi − aαi
ηi,Σi,ηi, αi),

with πi > 0;

g∑
i=1

πi = 1, ||(µr − aαr
ηr)− (µl − aαl

ηl)||, forr 6= l ∈

B>i D
−1
i Biis a diagonal matrix, µl 6= µr,λl 6= λr,Bl 6= Br,Dl 6= Dr, αl 6= αr

}
.

Theorem 3.2. Suppose that pdf of the PM-NMVBSFA for the general UUU struc-
ture is parameterized in a different way as:

f(y; Θ) =

g∑
r=1

πrfNMVBS(y,µr − aαiηr,Σr,ηr, αr), and

f(y; Θ̃) =

g̃∑
l=1

πlfNMVBS(y, µ̃l − aα̃l
η̃l, Σ̃l, η̃l, α̃l).

For the considered PM-NMVBSFA model in (7), if condition C is hold, then the
equality f(y; Θ) = f(y; Θ̃) implies that g = g̃, and there are r, l ∈ {1, 2, . . . , g}
such that µl = µ̃r,λl = λ̃r,Bl = B̃r,Dl = D̃r, and αl = α̃r.

Proof. We first note that the finite mixture of our considered special cases of the
NMVBS distributions is identifiable, see, for instance, Naderi et al. [21] for the
identifiability issue of the finite mixture of the NMVBS distributions. Now, if
conditions class C are fulfilled and the proof can be obtained directly from the
proof of Theorem 1 Dang et al. [22].

3.3 Parameter estimation via the ECM algorithm

In this section, the parameter estimation of the PM-NMVBSFA model is carried
out via an expectation conditional maximization (ECM) algorithm. Meng and
Rubin [18] considered the ECM algorithm as an extension of the EM algorithm
[17]. Several properties of this algorithm include stable features, implementation
simplicity, and monotone convergence.

To simplify notation, we denote the complete data by yc = (y, Ũ ,W ,Z),
where y = (y1, . . . ,yn), Ũ = (Ũ1, . . . , Ũn)>, W = (W1, . . . ,Wn) and Z =
(z>1 , . . . ,z

>
n )>. From (13), the log-likelihood function of Θ for yc, without con-
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sidering constant terms is

`c(Θ;yc) =

g∑
i=1

n∑
j=1

zij

{
log πi − logαi −

(Wj − 1)2

2α2
iWj

− 1

2
log |Di| −

1

2
tr
(
D−1
i Υij

)
− 1

2

((
Wj − 2aαi +W−1

j a2
αi

)
λiλ

>
i − 2λi(Ũij − aαiW

−1
j Ũij)

> +W−1
j ŨijŨ

>
ij

)}
,

(16)

where Υij = W−1
j

(
yj − µi − B̃iŨij

)(
yj − µi − B̃iŨij

)>.
After that, as conditional expectations, we have the following:

ẑ
(k)
ij =E(Zij | yj ; Θ̂(k)), ŵ

(k)
ij = E(Wj | Zij = 1,yj , Θ̂

(k)), (17)

ζ̂
(k)
0ij =E(Ũij | Zij = 1,yj , Θ̂

(k)), ζ̂
(k)
1ij = E(W−1

i Ũij | Zij = 1,yj , Θ̂
(k)),

Ω̂
(k)
ij =E(W−1

i ŨijŨ
>
ij | Zij = 1,yj , Θ̂

(k)), t̂
(k)
ij = E(W−1

j | Zij = 1,yj , Θ̂
(k)).

Now, the ML parameter estimation of the PM-NMVBSFA model via the ECM
algorithm proceeds as follows:

• E-step: At the kth iteration, the so-called Q-function defined as the ex-
pected value of complete data log-likelihood (16) concerning the conditional
distribution of S given the observed data yj evaluated at Θ = Θ̂(k), is

Q(θ | θ̂(k)) =

g∑
i=1

n∑
j=1

ẑ
(k)
ij

{
log πi − logαi −

1

2α2
i

(ŵ
(k)
ij − 2 + t̂

(k)
ij )− 1

2
log |Di|

− 1

2
tr
(
D−1
i Υ

(k)
ij

)
− 1

2

(
(ŵ

(k)
ij − 2aαi

+ a2
αi
t̂
(k)
ij )λiλ

>
i

− 2λ>i (ζ̂
(k)
0ij − aαi

ζ̂
(k)
1ij ) + Ω̂

(k)
ij

)}
, (18)

where

Υ
(k)
ij =t̂

(k)
ij (yj − µi)(yj − µi)> − B̃iζ̂

(k)
1ij (yj − µi)>

− (yj − µi)ζ̂(k)
1ij B̃

>
i + B̃iΩ̂

(k)
j B̃>i , (19)

• CM-step 1: The CM-steps obtained by maximizing (18) concerning µi,λi,Bi
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and Di proceed as follows:

π̂i =
ni
n
, µ̂

(k+1)
i =

∑n
j=1 ẑ

(k)
ij (t̂

(k)
ij yj −

ˆ̃B
(k)
i ζ̂

(k)
1ij )∑n

j=1 ẑ
(k)
ij t̂

(k)
ij

,

λ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij

(
ˆ̃
ζ

(k)
0ij − aα̂(k)

i

ˆ̃
ζ

(k)
1ij

)
∑n
j=1 ẑ

(k)
ij

(
ŵ

(k)
ij − 2a

α̂
(k)
i

+ a2

α̂
(k)
i

t̂
(k)
ij

) ,
ˆ̃B

(k+1)
i =

 n∑
j=1

ẑ
(k)
ij (yj − µ̂(k+1)

i )
ˆ̃
ζ

(k)
1ij

>
 n∑

j=1

ẑ
(k)
ij Ω̂

(k)
ij

−1

,

D̂
(k+1)
i =

1

n̂
(k)
i

Diag

 n∑
j=1

ẑ
(k)
ij Υ̂

(k+1/2)
ij

 ,

where Υ̂
(k+1/2)
ij is obtained by substituting µ̂(k+1)

i and ˆ̃B
(k+1)
i into (19).

Then, the factor loading can be calculated by B̂(k+1)
i = ˆ̃B

(k+1)
i Λ̂(k+1) where

Λ̂(k+1) = aα̂i
(k+1)Iq + bα̂i

(k+1)λ̂(k+1)λ̂(k+1)> that α̂i(k) evaluated in the next
CM step. Also, we have the following estimates for different cases of covari-
ance structures:

• If Bi = B, then

ˆ̃B(k+1) =

 g∑
i=1

n∑
j=1

ẑ
(k)
ij (yj − µ̂(k+1)

i )
ˆ̃
ζ

(k)
1ij

 g∑
i=1

n∑
j=1

ẑ
(k)
ij Ω̂

(k)
ij

−1

.

• If Di = diIp, then

d̂
(k+1)
i =

1

pni
tr

 n∑
j=1

ẑ
(k)
ij Υ̂

(k+1/2)
ij

 .

• If Di = D, then

D̂(k+1) =
1

n
diag

 g∑
i=1

n∑
j=1

ẑ
(k)
ij Υ̂

(k+1/2)
ij

 .

• If Di = dIp, then

d̂(k+1) =
1

pn
tr

 g∑
i=1

n∑
j=1

ẑ
(k)
ij Υ̂

(k+1/2)
ij

 .
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• CM-step 2: The update of αi can be gained by maximizing Q(Θ | Θ̂(k)) or
equivalently by solving the root of the following equation:

n∑
j=1

ẑ
(k)
ij

{
− 1

αi
+

1

α3
i

(ŵ
(k)
ij − 2 + t̂

(k)
ij )

− 1

2

(
2αiaαi

t̂
(k)
ij − 2αi)λiλ

>
i + 2αiλ

>
i ζ̂

(k)
1ij

)}
= 0.

Moreover, when αis are assumed to be the same, say αi = α with i =
1, . . . , g, the estimator of α is evaluated using functions such as uniroot in
R programming by

g∑
i=1

n∑
j=1

ẑ
(k)
ij

{
− 1

α
+

1

α3
(ŵ

(k)
ij − 2 + t̂

(k)
ij )

− 1

2

(
(2αaαi

t̂
(k)
ij − 2α)λiλ

>
i + 2αλ>i ζ̂

(k)
1ij

)}
= 0.

For calculating and predicting factor scores and missing information, denote the
ML estimates by Θ̂ = (π̂1, · · · , π̂g−1, θ̂1, · · · , θ̂g) where θ̂i = (µ̂i, λ̂i, B̂i, D̂i, α̂i).
The estimator of factor scores can be evaluated as follows:

ûij = E(Uij | yj , Zij = 1, Θ̂) = Λ̂
−1/2
i E(Ũij | yj , Zij = 1, Θ̂), (20)

where Λ̂i and E(Ũij | yj , Zij = 1, Θ̂) are calculated using Λi = bαi
Iq + bαi

λiλ
>
i

and Proposition 3.1, respectively, evaluated at Θ̂. Therefore, we have

ûj =

g∑
i=1

ẑijûij , j = 1, . . . , n. (21)

3.4 Notes on implementation
Like any other EM-type algorithm, if the ECM algorithm is given good parameter
estimates, convergence may be speed up or made easier. When the raw data
contains missing values, after filling in the missing values of the kth variable with
the mean of the corresponding column regardless of the missing values, for πi initial
estimate, we first divide the datasets into g groups using the k-means function in R.
Thus, the estimate of πi parameters is the number of group members i divided by
the number of sample (n). Initial value of µ̂(0)

i , B̂(0)
i , D̂(0)

i and α̂(0)
i are described

in Hashemi et al. [15] datasets including the ith label.
The Akaike Information Criterion (AIC) and the Bayesian Information Cri-

terion (BIC) [23] are measures to select the number of classes and factors. It is
calculated as:

AIC = −2`max + 2m, BIC = −2`max +m log n,
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wherem is the number of free parameters, and `max is the maximized log-likelihood
value.

Models with fewer AIC and BIC values are generally better fitted. To measure
the ability of clustering agreement, we employ the misclassification rate (MCR),
the correct classification rate (CCR) and adjusted Rand index (ARI, [24]). The
model with the highest CCR and ARI and lower MCR score is considered to
provide the most reliable classification accuracy.

4. Standard errors estimation

The hierarchical form of UUU model in PM-NMVBSFA regardless of scaling trans-
formation obtained by

Yj |
(
Uij ,Wj , Zij = 1

)
∼ Np(µi +BiUij ,WjDi),

Uij | (Wj , Zij = 1) ∼ Nq

(
(Wj − aαi)Λ

−1/2
i λi,WjΛ

−1
i

)
,

Wj | Zij = 1 ∼ BS(αi, 1),

Zj ∼ M(1;π1, . . . , πg).

In this model, the information-based technique is exploited to compute the es-
timates of the parameter’s standard errors. Following Meilijson [25], the Fisher
information matrix can be approximated by

Io(Θ̂ | y) =

n∑
j=1

ŝj ŝ
>
j , (22)

where

ŝj = E

(
`c(Θ | ycj)

∂Θ
| yj , Θ̂

)
, (23)

is the individual score vector corresponding to yj . Moreover,

`c(Θ | ycj) =

g∑
i=1

Zij

{
− logαi −

1

2α2
i

(
Wj +W−1

j − 2
)
− 1

2
log |Di|+

1

2
log |Λi|

−1

2
tr
(
W−1
j D−1

i (yj − µi −BiUij)(yj − µi −BiUij)>
)

−1

2
bαW

−1
j λ>i UijU

>
ijλi −

1

2

(
Wj +W−1

j a2
αi
− 2aαi

)
λ>i λi

22− 1

2
aαi

W−1
j U>ijUij + λ>i Λ

1/2
i (Uij − aαi

W−1
j Uij)

}
,

denotes the individual complete-data log-likelihood contributed by ycj = (yj ,Uij ,Wj).
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Proposition 4.1. The square-root matrix of Λi = aαi
Iq + bαi

λiλ
>
i = aαi

(Iq +
cαλiλ

>
i ) is

Λ
1/2
i =

√
aαi
V∆

1/2
i V −1,

where cαi
= bαi

/aαi
and

Vi = [vi1 vi2 · · ·viq] ,

with vid = (−λi,q−d+1/λi,1, 0 . . . 0︸ ︷︷ ︸
q−d−1 times

1 0 . . . 0︸ ︷︷ ︸
d−1 times

)> for d = 1, . . . , q − 1, vq =

(λi,1/λi,q, λi,2/λi,q, . . . , λi,q−1/λi,q, 1)> being eigenvectors of Λi, and λi = (λi,1, . . . , λi,q)
>.

Moreover, ∆i is a diagonal matrix which has the eigenvalues of Λi along the main
diagonal. Specifically,

∆i =


1 0 · · · 0

0
. . .

...
... 1 0

0 · · · 0 1 + cαi
‖λi‖2

 .

Proof. The proof is straightforward and hence is omitted.

Let bi = vec(Bi) denote a pq × 1 vector by stacking the column vectors of
Bi and di = Diag(Di) a p × 1 vector including entries on the main diagonal of
Di. Using differentiation of the standard matrix, the individual score vector (23)
includes the following elements:

ŝj,πi
= E

(
`c(Θ | ycj)

∂πi
| yj , Θ̂

)
=
ẑrj
π̂r
− ẑgj
π̂g

(r = 1, . . . , g − 1),

ŝj,µi = E

(
`c(Θ | ycj)

∂µi
| yj , Θ̂

)
= ẑij

{
D̂−1
i

{
t̂ij(yj − µ̂i)− B̂iζ̂1ij

}}
,

ŝj,bi = E

(
`c(Θ | ycj)

∂bi
| yj , Θ̂

)
= ẑij

{
vec
(
D̂i
−1
{

(yj − µ̂i)ζ̂1ij − B̂iΩ̂ij

})}
,

ŝj,di
= E

(
`c(Θ | ycj)

∂d
| yj , Θ̂

)
= ẑij

{
Diag

(
−1

2

{
D̂i
−1
− D̂i

−1
Υ̂jD̂i

−1
})}

,

ŝj,λi
= E

(
`c(Θ | ycj)

∂λi
| yj , Θ̂

)
= ẑij

{aq−1
α̂i

bα̂i

|Λ̂i|
λ̂i − bα̂i

Ω̂ijλ̂i

−
(
ŵij + t̂ija

2
α̂i
− 2aα̂i

)
λ̂i + Λ̂

1
2
i (ζ̂0ij − aα̂i

ζ̂1ij) + δ̂ij

}
,
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ŝj,αi = E

(
`c(Θ | ycj)

∂αi
| yj , Θ̂

)
= ẑij

{
− 1

α̂i
+

1

α̂3
i

(ŵj + t̂ij − 2)

+
K̂

2|Λ̂i|
− a′α̂i

λ̂>i Λ̂
1/2
i ζ̂1ij − (a′α̂i

aα̂i
t̂ij − a′α̂i

)λ̂>i λ̂i −
1

2
b′α̂i
λ̂>i Ω̂ijλ̂i

− 1

2
a′α̂i

ω̂ij + λ̂>i

[
∂Λ

1/2
i

∂αi

]
λi=λ̂i,αi=α̂i

(ζ̂0ij − aα̂i
ζ̂1ij)

}
,

where ŵij = E(Wj | yj , Θ̂, Zij = 1), t̂ij = E(W−1
j | yj , Θ̂, Zij = 1), a′α̂i

= α̂i,

b′α̂i
= 2α̂i + 5α̂3

i , |Λ̂i| = aqα̂i
+ aq−1

α̂i
bα̂i
λ̂i
>
λ̂i,

ζ̂0ij = E(Uij | yj , Θ̂, Zij = 1) = Λ̂
−1/2
i E(Ũij | yj , Θ̂, Zij = 1),

ζ̂1ij = E(W−1
j Uij | yj , Θ̂, Zij = 1) = Λ̂

−1/2
i E(W−1

j Ũij | yj , Θ̂, Zij = 1),

Ω̂ij = E(W−1
j UijU

>
ij | yj , Θ̂, Zij = 1) = Λ̂

−1/2
i E(W−1

j ŨijŨ
>
ij | yj , Θ̂, Zij = 1)Λ̂

−1/2
i ,

ω̂ij = E(W−1
j U>ijUij | yj , Θ̂, Zij = 1) = tr(Ω̂j),

K̂i =
[
∂|Λi|/∂αi

]
λi=λ̂i,αi=α̂i

= qa′α̂i
aq−1
α̂i

+
{
aq−1
α̂i

b′α̂i
+ (q − 1)a′α̂i

aq−2
α̂i

bα̂i

}
λ̂>i λ̂i,

and δ̂ij = (δ̂1ij , . . . , δ̂qij)
> with

δ̂dij = λ̂>i

[
∂Λ

1/2
i

∂λd

]
λi=λ̂i,αi=α̂i

(ζ̂0ij − aα̂i
ζ̂1ij), for d = 1, . . . , q.

To compute ∂Λ
1/2
i /∂αi and ∂Λ

1/2
i /∂λd for d = 1, . . . , q, Proposition 4.1 and the

chain rule can be applied to gain

∂Λ
1/2
i

∂αi
=
∂
[√

aαi

(
Iq + cαiλiλ

>
i

)1/2]
∂αi

=
αi

2aαi

Λ
1/2
i +

√
aαi
Vi

∆
1/2
i

∂αi
V −1
i ,

and

∂Λ
1/2
i

∂λd
=
√
aαi

[
∂Vi
∂λi

∆
1/2
i V −1

i + Vi
∆

1/2
i

∂λd
V −1
i − Vi∆1/2

i V −1
i

∂Vi
∂λd

V −1
i

]
.

As a result, the standard errors of Θ̂ is obtained as the diagonal elements of the
square roots (22).

5. Simulations

5.1 Asymptotic properties of the ML estimations
In this experiment, we obtain the performance of the proposed ML estimations
based on the ECM algorithm to regain the true parameters for PM-NMVBSFA.
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We generate M = 500 artificial samples from model (7) with q = 1, g = 2 and
structure UUU under different sample size n = 100, 200, 500, 1000, 2000. The
common true parameters of these models include

π1 = 0.4, π2 = 0.6, α1 = 0.5, α2 = 1, λ1 = −1, λ2 = 2

µ1 = (2, 3, 5, 3, 1)>, µ2 = (12, 13, 15, 13, 11)>, B1 = (4, 5, 2, 4, 6)>,

B2 = (3, 5, 3, 4, 7)>, D1 = diag(1, 2, 3, 4, 5)>, D2 = diag(2, 3, 4, 5, 6)>.

The ECM algorithm is used to fit each simulated dataset under the UUU structure.
We computed the average values and the corresponding standard deviations of the
ML estimates across all Monte Carlo samples.

The relative absolute bias (RBias) and the root mean squared error (RMSE)
were computed for the estimation accuracy measurement:

RBias =
1

M

M∑
i=1

| θ̂i − θtrue
θ̂i

| and RMSE =

√∑M
i=1(θ̂i − ¯̂

θ)2

M
,

where θ̂i denotes the ML estimate of a specific parameter at the ith replication
and θtrue is its true value.

In addition, investigating the standard error’s estimation consistency is inter-
est. So, by using the observed information matrix (IMSE), we measured the sample
standard deviation of parameters (STD) and the average standard errors:

STD(θ̂i) =

√√√√√ 1

M − 1

 M∑
r=1

(
θ̂

(r)
i

)2

− 1

M

(
M∑
r=1

θ̂
(r)
i

)2
 and IMSE(θ̂i) (24)

=
1

M

M∑
r=1

SE(θ̂
(r)
i ),

where SE(θ̂
(r)
i ) denotes the asymptotic standard errors of θ̂i at the rth replication.

We examine the accuracies of STD estimators with IMSE as well as n increase for
the above factor model using discrepancy measures: sum of absolute deviation of
STD with IMSE computed by

SAD(θ̂i) = |STD(θ̂i)− IMSE(θ̂i)|

where STD(θ̂i) is the standard deviation of θ̂i and IMSE(θ̂i) is average standard
errors using the observed information matrix for parameter θ̂i with sample size n.

Figure 1 shows the means of RBias and RMSE for every parameter in UUU
structure of the PM-NMVBSFA model. It should be mentioned that the assumed
parameter differs for each model. Based on Figure 1, the simulation experiment’s
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Figure 1: Average RBias and RMSE of parameter estimates in the considered
EM-type as a function of sample size.

results show the effectiveness of the proposed ECM algorithm in parameter recov-
ery of all the considered sub-models. Figure 2, depicts that the empirical standard
errors (STD) differences and the theoretic results of standard errors (IMSE) tend
to get zero as well, revealing the reliability of the proposed asymptotic approxi-
mation through (22) to measure the ML estimates standard errors.

5.2 The performance of the factor models via heavy-tailed
data

In this simulation study, we examine the performance of the proposed model based
on heavy-tailed data in terms of clustering quality. These generated data sets are
simulated from a two-component normal inverse Gaussian factor model (NIGFA).

Yj = µi +BiUij + εij with probability πi (i = 1, . . . , g), (25)
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Figure 2: Value of SAD Criterion for parameter estimates in the considered EM-
type as a function of sample size.

where[
Uij
εij

]
∼ NIGq+p

([
−aθiΛ

−1/2
i λi
0

]
,

[
Λ−1
i 0
0 Di

]
,

[
Λ
−1/2
i λi

0

]
, χi, ψi

)
, (26)

where Λi = aθiIq + bθiλiλ
>
i , aθi =

√
χi/ψi, bθi = χi/ψi

K1.5(
√
χiψi)

K−0.5(
√
χiψi)

− a2
θi
,

and NIGp(µi,λi,Σi, χi, ψi) denotes the p-variate NIG distribution, obtained as
a special case of GH distribution with κ = −0.5. The four parsimonious mixtures
of NIGFA (PM-NIGFA) models generated in these simulations are: CUU, UCU,
UUC and UUU. The true parameters model for any structures are as follows:

π1 = 0.35, π2 = 0.65, χ1 = 4, χ2 = 6, ψ1 = 11, ψ2 = 1, λ1 = (1, 2)>,

λ2 = (5, 2)>, µ1 = (10, 11, 12, 13, 14)>, µ2 = (18, 16, 16, 17, 17)>,

and

• for CUU:

B1 = B2 =

(
3 3 3 4 5
2 4 6 0 0

)>
, D1 = diag(1, 2, 3, 4, 5)>,

D2 = diag(2, 3, 4, 5, 6)>,
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• for UCU:

B1 =

(
3 3 3 4 5
2 4 6 0 0

)>
, B2 =

(
2 2 2 3 4
1 3 5 2 2

)>
,

D1 = D2 = diag(1, 2, 3, 4, 5)>,

• for UUC:

B1 =

(
3 3 3 4 5
2 4 6 0 0

)>
, B2 =

(
2 2 2 3 4
1 3 5 2 2

)>
,

D1 = diag(1, 1, 1, 1, 1)>, D2 = diag(2, 2, 2, 2, 2)>,

• for UUU:

B1 =

(
3 3 3 4 5
2 4 6 0 0

)>
, B2 =

(
2 2 2 3 4
1 3 5 2 2

)>
,

D1 = diag(1, 2, 3, 4, 5)>, D2 = diag(2, 3, 4, 5, 6)>.

We generate n = 400, PM-NIGFA models with the above true parameters for four
structures. For each of the 100 replications, we fitted a full structure parsimonious
mixture of factor analysis (PM-FA), the parsimonious mixture of t factor analysis
(PM-tFA), the parsimonious mixture of skew-normal factor analysis (PM-SNFA),
parsimonious mixture of skew-t factor analysis (PM-STFA) and PM-NMVBSFA
with g = {1, 2, 3, 4} and q = 2. For every structure and model, the number of
selected components based on the lowest BIC is g = 2. Figure 3 shows a heat
map of the average of BIC values for every structure and model based on 100
replications. The comparison of the average of model’s BIC values, shows that the
BIC is lower for the PM-NMVBSFA in every structure generated based on PM-
NIGFA. Once again, the ARI of all structures in five models is given in heat map
Figure 4 and shows that the model with the lower BIC also has better clustering
performance.

6. Analysis of the Sonar data

Sonar, navigation and distance detection by sound, is a technology that can iden-
tify other vessels or ships by using underwater sound emission. Active sonar works
by generating sound pulses (known as pings), and then listening for the return
pulse. To determine the distance from the target, one can measure the time be-
tween receiving and sending the pulse. To measure the direction and alignment
of the target, multiple hydrophones can be used, and then the time of receiving
the pulse by each of these hydrophones is measured by comparing these times, the
direction and alignment of the target can be easily determined. Sonar performance
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Figure 3: A heat map representation of the average BIC value for all eight struc-
tures in each model.

depends on the speed of sound. The speed of sound in freshwater is slower than
the speed of sound in seawater. In all waters, the speed of sound depends on the
density of the water. Density depends on parameters such as temperature, water
salts (usually water salinity) and pressure.

The performance of active sonar is similar to radar. A sound pulse is sent,
then the sound waves start moving in all directions. When these waves hit the
ground, the incident waves are reflected in all directions and some of the reflected
signals reach the active sonar sensor. These reflected signals enable sonar techni-
cians to identify parameters such as signal frequency, signal energy, depth, water
temperature, and as a result, the location of the target.

To illustrate our methodology, we consider the Sonar datasets studied by Gor-
man and Sejnowski [26]. This dataset is available at the UCI Machine Learn-
ing Repository (https://www. kaggle.com/code/martinhewing/uci-sonar-dataset).
There are n = 208 inventories with p = 60 continuous attributes between 0 and 1,
denoted by X1, . . . , X60, that contain measurements on 111 bouncing sonar signals
off a metal cylinder and 97 bouncing signals off rocks subsets. Figure 5 shows range
of skewness and kurtosis for 60 attributes of Sonar data. The results depicted in
Figure 5 show that for the considered data most of the attributes are moderately
skewed.

To study the performance of the considered model, we implement PM-N, PM-
T, PM-SNFA and PM-STFA to compare with the PM-NMVBSFA model with the
number of latent factors q ranged from 2 to 7 for g = 1, . . . , 5 to fit the Sonar
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Figure 4: A heat map representation of the average ARI value for all eight struc-
tures in each model.

0
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Kurtosis Skewness

Figure 5: Range of skewness and kurtosis 60 attributes Sonar data.

data datasets. For every model, the number of selected components based on the
lowest BIC was g = 2. Figure 6 shows the minimum BIC for the eight structures
for all models based on each pair (g, q). The BIC of all eight structures in every
model was compared to the sonar data for g = 2 and q = 2, . . . , 7 in the heat map
Figure 7. The model with the lowest BIC (-35307.75) was selected; this was the
CUU structure of the PM-NMVBSFA model with g = 2 and q = 7. Table 2 shows
10 first attribute parameters for the 2 clusters as well as the standard errors for
the selected model, we do not show other attributes for the sake of space.
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Figure 6: A heat map representation of the minimum BIC value for each value of
(g, q) in sonar data sets, where the minimum is taken over the eight models.

The results of clustering selected structures based on Figure 7 are compared in
Table 3. The clustering performance of PM-NMVBSFA (ARI = 0.477) is better
than that of PM-STFA (ARI = 0.425). According to Table 3 and Figure 7, the
CUU structure of PM-NMVBSFA is the best model to fit and the best clustering
accuracy for this dataset.
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Figure 7: A heat map representation of the BIC value for each models with g = 2
for sonar data sets.
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Table 3: Performance estimation for factor models fitted to the sonar data.

PM-FA PM-tFA PM-SNFA PM-STFA PM-NMVBSFA
Selected model q = 6 UUC q = 7 CUU q = 7 CUU q = 7 CCU q = 7 UUC

1 2 1 2 1 2 1 2 1 2
Rock 15 82 11 86 85 12 88 9 91 6
Metal 38 73 31 80 33 78 29 82 27 84

7. Concluding remarks
A computationally feasible ECM algorithm is developed to estimate PM-NMVBSFA
model parameters under eight structures covariance matrix to accommodate asym-
metric shapes and heavy tails data. The performance of the proposed finite mix-
ture models has been investigated by model-based clustering using two Monte
Carlo simulation studies and a real data set. Numerical results reveal that the
PM-NMVBSFA model outperforms other competing models based on model fit-
ting and outright clustering when data contain and exhibit non-normal features
such as multimodality, asymmetry, and heavy-tailed data.

There are a few issues as well as possible modifications related to the proposed
methodology that deserve further attention. As has been indicated in these mod-
els, its PM-NMVBSFA under a missing-information framework as an extended tool
to accommodate incomplete data can be challenged. We have recently focused our
work on these subjects and it is expected to present the findings in future papers.
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regarding the publication of this article.
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Appendix A. The GH and the generalized inverse
Gaussian
The GH distribution of [20] showed its applicability in modeling skewed data,
despite its complicated form. Its probability density function (pdf) has the form

fGHp
(x;µ,λ,Σ, κ, χ, ψ) =C

Kκ− p
2

(√(
ψ + λ>Σ−1λ

)(
χ+ (x− µ)>Σ−1(x− µ)

))
(√(

ψ + λ>Σ−1λ
)(
χ+ (x− µ)>Σ−1(x− µ)

)) p
2−κ

× exp
{

(x− µ)>Σ−1λ
}
, x ∈ Rp, (27)
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µ, λ ∈ Rp, Σ ∈ Rp×p space of p× p positive definite matrices, where

C = (ψ/χ)κ/2(ψ + λ>Σ−1λ)p/2−κ/(2π)p/2|Σ|1/2Kκ(
√
ψχ),

is the normalizing constant. We shall write X ∼ GHp(µ,λ,Σ, κ, χ, ψ) to indicate
that the random vectorX has the pdf (27). Specifically,W follows the generalized
inverse Gaussian (GIG) distribution with pdf

fGIG(w;κ, χ, ψ) =

(
ψ

χ

)κ/2
wκ−1

2Kκ(
√
ψχ)

exp

{
−1

2

(
w−1χ+ wψ

)}
, w > 0.
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