[1] R. Baeza-Yates and R. Ribeiro-Neto, Modern Information Retrieval, ACM Press / Addison Wesley, 1999.
[2] R. K. Belew, Adaptive information retrieval: Using a connectionist representation to retrieve and learn about documents, In Belkin and van Rijsbergen,The 12th Annual International Conference on Research Development in Information Retrieval, (1989) 11 - 20.
[3] Y. Campbell, A. W. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, Princeton, NJ, USA, 1996.
[4] F. Crestani, Application of spreading activation techniques in information retrieval, Artif. Intell. Rev. 11 (1997) 453 - 482.
[5] N. Craswell and M. Szummer, Random Walks on the Click Graph, Proc. of SIGIR, 2007.
[6] T. E. Doszkocs, J. A. Reggia and X. Lin, Connectionist models and information retrieval, Annu. Rev. Info. Sci. Technol. 25 (1990) 209 - 260.
[7] M. E. Fisher, Shape of a self-avoiding walk or polymer chain, J. Chem. Phys. 44 (1966) 616 - 622.
[8] M. C. Guerrette, K. Guérard and J. Saint-Aubin, The role of overt language production in the Hebb repetition effect, Mem. Cognit. 45 (2017) 792 - 803.
[9] J. J. Hopfield and D. W. Tank, Computing with neural circuits: a model, Science 233 (1986) 625 - 633.
[10] O. Häggström, Finite Markov Chains and Algorithmic Applications, Cambridge University Press, Cambridge, UK, 2002.
[11] J. Kounios, A. M. Osman and D. E. Meyer, Structure and process in semantic memory: new evidence based on speed–accuracy decomposition, J. Exp. Psychol. Gen. 116 (1987) 3 - 25.
[12] M. L. Minsky, Semantic Information Processing, The MIT Press, 1969.
[13] R. Mihalcea and P. Tarau, TextRank: bringing order into texts, Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, (2006) 404 - 411.
[14] C. Ogden, I. Richards, B. Malinowski and F. Crookshank, The Meaning of Meaning, Routledge & Kegan Paul, London, 1949.
[15] Y. Ogawa, T. Morita and K. Kobayashi, A fuzzy document retrieval system using the keyword connection matrix and a learning method. Applications of fuzzy systems theory, Fuz. Sets Syst. 39 (1991) 163 - 179.
[16] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical report, Stanford Digital Library Technologies Project, 1998.
[17] K. Pearson, The problem of the random walk, Nature 72 (1) (1905) 294.
[18] J. M. Ponte and W. B. Croft, A language modeling approach to information retrieval, Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, 98 (1998) 275 - 281.
[19] S. E. Robertson and K. Sparck Jones, Relevance Weighting of Search Terms, J. Am. Soc. Inf. Sci. 27 (1976) 129 - 146.
[20] G. Salton, Automatic Information Organization and Retrieval, McGraw Hill Text, 1968.
[21] G. Salton, The SMART Retrieval System: Experiments in Automatic Document Processing, Prentice -Hall Inc., 1971.
[22] G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24 (1988) 513 - 523.
[23] G. Salton, Introduction to Modern Information Retrieval, Mcgraw-Hill College, 1983.
[24] S. Sabetghadam, M. Lupu and A. Rauber, Which one to choose: random walks or spreading activation? Multidisciplinary Information Retrieval, 8849 (2014) 112 - 119.
[25] H. Turtle and W. B. Croft, Evaluation of an inference network-based retrieval model, ACM Trans. Inf. Syst. 9 (1991) 187 - 222.
[26] H. C. Tuckwell, Introduction to Theoretical Neurobiology, vol. 2, Nonlinear and Stochastic Theories, Cambridge University Press, Cambridge, 1988.
[27] E. Tulving, G. Bower and W. Donaldson, Organization of Memory, New York, Academic Press, 1972.
[28] M. Usher and J. L. McClelland, The time course of perceptual choice: The leaky, competing accumulator model, Psychol. Rev. 108 (2001) 550 - 592.
[29] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo and H. E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911 - 914.
[30] R. Wilkinson and P. Hingston, Using the cosine measure in a neural network for document retrieval, In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, 202 - 210, Chicago, IL USA, 1991.
[31] H. Zheng, G. Xiao, G. Wang, G. Zhang and K. Jiang, Mean first passage time of preferential random walks on complex networks with applications, Math. Probl. Eng. 2017 Art. ID 8217361, 14 pp.