An ECDLP-Based Verifiable Multi-Secret Sharing Scheme

Document Type : Original Scientific Paper


Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, I. R. Iran


‎‎Secret sharing is an important issue in cryptography which has many applications‎. ‎In a secret sharing scheme‎, ‎a secret is shared by a dealer among several participants in such a way that any authorized subset of participants can recover the secret by pooling their shares‎. ‎Recently‎, ‎several schemes based on elliptic curves and bilinear maps have been presented‎. ‎Some of these schemes need a secure channel‎, ‎there are restrictions on the number of secrets‎, ‎or the participants or the dealer are unable to verify the validity of the shares‎. ‎In this paper‎, ‎we present a new verifiable (t‎, ‎n)-threshold multi-secret sharing scheme based on elliptic curves and pairings that does not have any of the above restrictions‎. ‎The hardness of a discrete logarithm problem on elliptic curves guarantees the security of the proposed scheme‎.


[1] ‎V‎. ‎P‎. ‎Binu and A‎. ‎Sreekumar‎, ‎Threshold Multi Secret Sharing Using Elliptic Curve and Pairing‎, Int. J. Inform. Process 9  (4) (2015) ‎100-112‎.
[2] ‎G‎. ‎Blakley‎, ‎Safeguarding cryptographic keys‎, Proc AFIPS 1979 National Computer Conference‎, ‎AFIPS Press‎, ‎New york‎, ‎1979, pp. ‎313-317‎.
[3] ‎W‎. ‎Chen‎, ‎X‎. ‎Long, Y. B‎. ‎Bai and X. P‎. ‎Gao‎, ‎A new dynamic threshold secret sharing scheme from bilinear maps‎,  International Conference on Parallel Processing Workshops (ICPPW 2007), Xian, 2007, p. 19.    
[4] ‎B‎. ‎Chor‎, ‎S‎. ‎Goldwasser‎, ‎S‎. ‎Micali and B‎. ‎Awerbuch‎, ‎Verifiable secret sharing and achieving simultaneity in the presence of faults ‎‎[A]‎‎, ‎‎26‎th Annual Symposium on Foundations of Computer Science (sfcs 1985), Portland, OR, USA, 1985, pp. ‎‎383-395‎‎,   DOI: 10.1109/SFCS.1985.64.
[5] ‎L‎. ‎Harn‎, ‎Efficient sharing (broadcasting) of multiple secret‎, in IEE Proceedings - Computers and Digital Techniques 142 (3)  (1995) 237-240‎.
[6] ‎N‎. ‎Koblitz‎, ‎Elliptic curve cryptosystems‎, Math. Comp. 48 (177) (1987) ‎203-209‎.
‎ [7] ‎H‎. ‎S‎. ‎Lee‎, ‎A self-pairing map and its applications to cryptography‎, Appl. Math. Comput.  151 (3) (2004) ‎671-678‎.
[8] ‎D‎. ‎Liu‎, ‎D‎. ‎Huang‎, ‎P‎. ‎Luo ‎and Y‎. ‎Dai‎, ‎New schemes for sharing points on an elliptic curve‎, Comput. Math. Appl.‎ 56 (6) (2008) ‎1556-1561‎.
[9] ‎V‎. ‎Miller‎, ‎Use of elliptic curves in cryptography, Advances in cryptology-CRYPTO '85 (Santa Barbara, Calif., 1985), 417--426, Lecture Notes in Comput. Sci., 218, Springer, Berlin, 1986. 
‎[10] ‎N‎. ‎Patel‎, ‎P‎. ‎D. Vyavahare and ‎M‎. ‎Panchal‎, ‎A Novel Verifiable Multi-Secret Sharing Scheme Based on Elliptic Curve Cryptography‎, The Tenth International Conference on Emerging Security Information‎, ‎Systems and Technologies, 2016.
[11] ‎A‎. ‎Shamir‎, ‎How to share a secret‎, Comm. ACM  22 (11) (1979) ‎612-613‎.
[12] ‎‎R‎. ‎Shi‎, ‎H‎. ‎Zhong ‎and L‎. ‎Huang‎, ‎‎A (a(t‎, ‎n)-threshold verified multi-secret sharing scheme based on ecdlp, Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), Qingdao, 2007, pp. 9--13, DOI:10.1109/SNPD.2007.416.
[13] ‎C‎. ‎Tang‎, ‎D‎. ‎Pei‎, ‎Z‎. ‎Liu ‎and Y‎. ‎He‎, Non-interactive and information theoretic secure publicly verifiable secret sharing, Cryptology ePrint Archive, Report 2004/201, 2004, (available at
[14] ‎S‎. ‎J‎. ‎Wang‎, ‎Y‎. ‎R‎. ‎Tsai ‎and C‎. ‎C‎. ‎Shen‎, ‎Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ecc‎, Wireless Pers. Commun. 56 (1) (2011) ‎173-182‎.