Planarity of Inclusion Graph of Cyclic Subgroups of Finite Group

Document Type : Original Scientific Paper

Authors

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, I. R. Iran

Abstract

Let G be a finite group. The inclusion graph of cyclic subgroups of G, Ic(G), is the (undirected) graph with vertices of all cyclic subgroups of G, and two distinct cyclic subgroups ⟨a⟩ and ⟨b⟩, are adjacent if and only if ⟨a⟩ ⊂ ⟨b⟩ or ⟨b⟩ ⊂ ⟨a⟩. In this paper, we classify all finite abelian groups, whose inclusion graph is planar. Also, we study planarity of this graph for finite group G, where |π(Z(G))| ≥ 2.

Keywords


[1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006) 468–492.
[2] D. Bubboloni, S. Dolfi, M. A. Iranmanesh and C. E. Praeger, On bipartite divisor graphs for group conjugacy class sizes,
J. Pure Appl. Algebra 213 (9) (2009) 1722–1734.
[3] D. Bubboloni, M. A. Iranmanesh and S. M. Shaker, Quotient graphs for power graphs,
Rendiconti del Seminario Matematico dell Universita’ di Padova, 138 (2017) 61–89.
[4] D. Bubboloni, M. A. Iranmanesh and S. M. Shaker, On some graphs associated with the finite alternating groups,
Com. Algebra 45 (2017) 5355–5373.
[5] P. J. Cameron, The power graph of a finite group II,
J. Group theory 13 (6) (2010) 779–783.
[6] P. J. Cameron and S. Ghosh, The power graph of a finite group,
Discrete Math. 311 (13) (2011) 1220–1222.
[7] I. Chakrabarty, Sh. Ghosh anf M. K. Sen, Undirected inclusion graphs of semigroups,
Semigroup Forum 78 (2009) 410–426.
[8] P. Devi and R. Rajkumar, Inclusion graph of subgroups of a group,
arXive:1604.08259v1 (2016).
[9] M. A. Iranmanesh and C. E. Praeger, Bipartite divisor graphs for integer subsets,
Graphs Combin. 26 (2010) 95–105.
[10] A. V. Kelarev and S. J. Quinn and R. Smolikova,
Power graphs and semigroups of matrices, Bull. Austral. Math. Soc. 63 (2001) 341–344.
[11] A. V. Kelarev and S. J. Quinn, A Directed graphs and combinatorial properties of semigroups,
J. Algebra 251 (2002) 16–26.
[12] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of semigroups,
Comment. Math. Univ. Carolin 45 (2004) 1–7.
[13] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups,
Contrib. General Algebra 12 (2000) 229–235.
[14] A. V. Kelarev and S. J. Quinn, Directed graph and combinatorial properties of semigroup, J. Algebra 251 (2002) 16–26.
[15] M. Mirzargar, A. R. Ashrafi and M.J. Nadjafi-Arani, On the power graph of a finite group,
Filomat 26 (2012) 1201–1208.
[16] G. R. Pourgholi, H. Yousefi-Azari and A. R. Ashrafi, The undirected power graph of a finite group,
Bull. Malays. Math. Sci. Soc. 38 (2015) 1517–1525.
[17] M. Shaker and M. Iranmanesh, On groups with specified quotient power graphs,
Int. J. Group Theory 5 (3) (2016) 49–60.
[18] D. B. West,
Introduction to graph theory, Prentice Hall. Inc. Upper Saddle River, NJ, 1996.