Weakly Compatible Maps and Fixed Points

Document Type : Original Scientific Paper

Authors

1 Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Department of Pure Mathematics, Imam Khomeini International University, Qazvin, I. R. Iran

Abstract

Here, the existence of fixed points for weakly compatible maps is studied. The results are new generalization of the results of [5]. Finally, we study the new common fixed point theorems.

Keywords


[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416 − 420.
[2] N. Cakić, Z. Kadelburg, S. Radenović and A. Razani, Common fixed point results in cone metric spaces for a family of weakly compatible maps, Adv. Appl. Math. Sci. 1 (2009) 183 − 207.
[3] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974) 267 − 237.
[4] M. Das and K. V. Naik, Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (3) (1979) 369 − 373.
[5] L. -G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007) 1468 − 1476.
[6] D. Ilić and V. Rakoˇ cević, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008) 876 − 882.
[7] G. Jungck, Commuting mappings and fixed point, Amer. Math. Monthly 83 (1976) 261 − 263.
[8] G. Jungck, Compatible mappings and common fixed point, Internat. J. Math. Math. Sci. 9 (1986) 771 − 779.
[9] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998) 227 − 238.
[10] F. Khojasteh, Z. Goodarzi and A. Razani, Some fixed point theorems of integral type contraction in cone metric spaces, Fixed Point Theory Appl. 2010 (2010) 189684.
[11] F. Khojasteh, A. Razani and S. Moradi, A Fixed point of generalized TF−contraction mappings in cone metric spaces, Fixed Point Theory Appl. 2011 (2011) 14.
[12] A. Razani, Results in Fixed Point Theory, Andisheh Zarin Publisher, Qazvin, 2010.
[13] A. Razani, V. Rakočević and Z. Goodarzi, Generalized ϕ-contraction for a pair of mappings on cone metric spaces, Appl. Math. Comput. 217 (22) (2011) 8899 − 8906.