[1] A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5 − 84.
[2] Y. Alizadeh, M. Azari and T. Došlić, Computing the eccentricity-related invariants of single-defect carbon nanocones, J. Comput. Theor. Nanosci. 10 (6) (2013) 1297 − 1300.
[3] A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571 − 1578.
[4] A. R. Ashrafi, T. Došlić and M. Saheli, The eccentric connectivity index of TUC 4 C 8 (R) nanotubes, MATCH Commun. Math. Comput. Chem. 65 (1) (2011) 221 − 230.
[5] M. Azari, Further results on non-self-centrality measures of graphs, Filomat 32 (14) (2018) 5137 − 5148.
[6] M. Azari, Eccentric connectivity coindex under graph operations, J. Appl. Math. Comput. 62 (1-2) (2020) 23 − 35.
[7] M. Azari, Further results on Zagreb eccentricity coindices, Discrete Math. Alg. Appl. 12 (6) (2020) 2050075.
[8] M. Azari, A. Iranmanesh and M. V. Diudea, Vertex-eccentricity descriptors in dendrimers, Studia Univ. Babes Bolyai Chem. 62 (1) (2017) 129 − 142.
[9] D. Bonchev and N. Trinajstić, Information theory, distance matrix, and molecular branching, J. Chem. Phys. 67 (1977) 4517 − 4533.
[10] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66 − 80.
[11] T. Došlić, A. Graovac and O. Ori, Eccentric connectivity indices of hexagonal belts and chains, MATCH Commun. Math. Comput. Chem. 65 (2011) 745 − 752.
[12] S. Ediz, M. R. Farahani and M. Imran, On novel harmonic indices of certain nanotubes, Int. J. Adv. Biotechnol. Res. 8 (4) (2017) 277 − 282.
[13] M. R. Farahani, Eccentricity version of atom-bond connectivity index of benzenoid family ABC5 (H k ), World Appl. Sci. J. 21 (9) (2013) 1260 − 1265.
[14] M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index, Optoelectron. Adv. Mater.-Rapid Commun. 4 (12) (2010) 2212 − 2215.
[15] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (1) (2000) 18 − 25.
[16] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5 − 16.
[17] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399 − 3405.
[18] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (4) (1972) 535 − 538.
[19] F. Hayat, Minimum second Zagreb eccentricity index of graphs with parameters, Discrete Appl. Math. 285 (2020) 307 − 316.
[20] S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi, Extermal properties of Zagreb coindices and degree distance of graphs, Miskolc Math. Notes 11 (2) (2010) 129 − 138.
[21] H. Hua and Z. Miao, The total eccentricity sum of non-adjacent vertex pairs in graphs, Bull. Malays. Math. Sci. Soc. 42 (3) (2019) 947 − 963.
[22] A. Ilić, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011) 590 − 600.
[23] X. Qi and Z. Du, On Zagreb eccentricity indices of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 241 − 256.
[24] H. S. Ramane, S. Y. Talwar and I. Gutman, Zagreb indices and coindices of total graph, semi-total point graph and semi-total line graph of subdivision graphs, Math. Interdisc. Res. 5 (2020) 1 − 12.
[25] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273 − 282.
[26] M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Tricyclic and tetracyclic graphs with maximum and minimum eccentric connectivity, Iran. J. Math. Sci. Inf. 11 (1) (2016) 137 − 143.
[27] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010) 524−538.
[28] Y. Wu and Y. Chen, On the extremal eccentric connectivity index of graphs, Appl. Math. Comput. 331 (2018) 61 − 68.
[29] K. Xu, K. C. Das and A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. (Engl. Ser.) 32 (1) (2016) 1477 − 1493.
[30] L. Zhang and B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189 − 194.