On Eccentricity Version of Zagreb Coindices

Document Type : Original Scientific Paper

Author

Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran

10.22052/mir.2021.240325.1247

Abstract

The eccentric connectivity coindex has recently been introduced (Hua and Miao, 2019) as the total eccentricity sum of all pairs of non-adjacent vertices in a graph. Considering the total eccentricity product of non-adjacent vertex pairs, we introduce here another invariant of connected graphs called the second Zagreb eccentricity coindex. We study some mathematical properties of the eccentric connectivity coindex and second Zagreb eccentricity coindex. We also determine the extremal values of the second Zagreb eccentricity coindex over some specific families of graphs such as trees, unicyclic graphs, connected graphs, and connected bipartite graphs and describe the extremal graphs. Moreover, we compare the second Zagreb eccentricity coindex with the eccentric connectivity coindex and give directions for further studies.

Keywords


[1] A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5 − 84.
[2] Y. Alizadeh, M. Azari and T. Došlić, Computing the eccentricity-related invariants of single-defect carbon nanocones, J. Comput. Theor. Nanosci. 10 (6) (2013) 1297 − 1300.
[3] A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571 − 1578.
[4] A. R. Ashrafi, T. Došlić and M. Saheli, The eccentric connectivity index of TUC 4 C 8 (R) nanotubes, MATCH Commun. Math. Comput. Chem. 65 (1) (2011) 221 − 230.
[5] M. Azari, Further results on non-self-centrality measures of graphs, Filomat 32 (14) (2018) 5137 − 5148.
[6] M. Azari, Eccentric connectivity coindex under graph operations, J. Appl. Math. Comput. 62 (1-2) (2020) 23 − 35.
[7] M. Azari, Further results on Zagreb eccentricity coindices, Discrete Math. Alg. Appl. 12 (6) (2020) 2050075.
[8] M. Azari, A. Iranmanesh and M. V. Diudea, Vertex-eccentricity descriptors in dendrimers, Studia Univ. Babes Bolyai Chem. 62 (1) (2017) 129 − 142.
[9] D. Bonchev and N. Trinajstić, Information theory, distance matrix, and molecular branching, J. Chem. Phys. 67 (1977) 4517 − 4533.
[10] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66 − 80.
[11] T. Došlić, A. Graovac and O. Ori, Eccentric connectivity indices of hexagonal belts and chains, MATCH Commun. Math. Comput. Chem. 65 (2011) 745 − 752.
[12] S. Ediz, M. R. Farahani and M. Imran, On novel harmonic indices of certain nanotubes, Int. J. Adv. Biotechnol. Res. 8 (4) (2017) 277 − 282.
[13] M. R. Farahani, Eccentricity version of atom-bond connectivity index of benzenoid family ABC5 (H k ), World Appl. Sci. J. 21 (9) (2013) 1260 − 1265.
[14] M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index, Optoelectron. Adv. Mater.-Rapid Commun. 4 (12) (2010) 2212 − 2215.
[15] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (1) (2000) 18 − 25.
[16] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5 − 16.
[17] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399 − 3405.
[18] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (4) (1972) 535 − 538.
[19] F. Hayat, Minimum second Zagreb eccentricity index of graphs with parameters, Discrete Appl. Math. 285 (2020) 307 − 316.
[20] S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi, Extermal properties of Zagreb coindices and degree distance of graphs, Miskolc Math. Notes 11 (2) (2010) 129 − 138.
[21] H. Hua and Z. Miao, The total eccentricity sum of non-adjacent vertex pairs in graphs, Bull. Malays. Math. Sci. Soc. 42 (3) (2019) 947 − 963.
[22] A. Ilić, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011) 590 − 600.
[23] X. Qi and Z. Du, On Zagreb eccentricity indices of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 241 − 256.
[24] H. S. Ramane, S. Y. Talwar and I. Gutman, Zagreb indices and coindices of total graph, semi-total point graph and semi-total line graph of subdivision graphs, Math. Interdisc. Res. 5 (2020) 1 − 12.
[25] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273 − 282.
[26] M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Tricyclic and tetracyclic graphs with maximum and minimum eccentric connectivity, Iran. J. Math. Sci. Inf. 11 (1) (2016) 137 − 143.
[27] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010) 524−538.
[28] Y. Wu and Y. Chen, On the extremal eccentric connectivity index of graphs, Appl. Math. Comput. 331 (2018) 61 − 68.
[29] K. Xu, K. C. Das and A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. (Engl. Ser.) 32 (1) (2016) 1477 − 1493.
[30] L. Zhang and B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189 − 194.