[1] S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: general treatment, Euro. J. Appl. Math. 13 (5) (2002) 567–585.
[2] M. Antonowicz and A. P. Fordy, Coupled Harry Dym equations with multi-Hamiltonian structures, J. Phys. A: Math. Gen. 21 (5) (1988) L269–L275.
[3] G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, New York, 2004.
[4] G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Appl. Math. Sci., vol. 168, Springer-Verlag, New York, 2010.
[5] A. F. Cheviakov, Computation of fluxes of conservation laws, J. Eng. Math. 66 (1-3) (2010) 153–173.
[6] A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comp. Phys. Comm. 176 (1) (2007) 18–61.
[7] W. Hereman, P. J. Adams, H. L. Eklund, M. S Hickman and B. M. Herbst, Direct methods and symbolic software for conservation laws of nonlinear equations, Advances in nonlinear waves and symbolic computation, 19 − 78, loose
errata, Nova Sci. Publ., New York, 2009.
[8] W. Hereman, P. P. Banerjee and M. R. Chatterjee, Derivation and implicit solution of the Harry Dym equation and its connections with the Korteweg–de Vries equation, J. Phys. A 22 (1989) 241–255.
[9] M. D. Kruskal, Nonlinear wave equations, Lecture Notes in Physics, vol. 38, pp. 310–354, Berlin-Heidelberg-New York: Springer, 1975.
[10] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (5) (1978) 1156–1162.
[11] M. Nadjafikhah and P. Kabi-Nejad, On the changes of variables associated with the Hamiltonian structure of the Harry-Dym equation, Glob. J. Adv. Res. Cl. Mod. Geom. 6 (2) (2017) 83–90.
[12] E. Noether, Invariante variations probleme, Nachr. Akad. Wiss. Gött. Math. Phys. Kl., 2 (1918), 235–257. (English translation in Transp. Theory Stat. Phys. 1 (3) (1971) 186–207.
[13] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986.
[14] D. Poole, Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Using Homotopy Operators, Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado, 2009.
[15] D. Poole and W. Hereman, The homotopy operator method for symbolic integration by parts and inversion of divergences with applications, Appl. Anal. 87 (2010) 433–455.