Inverse Nodal Problem for Polynomial Pencil of a Sturm-Liouville Operator from Nodal Parameters

Document Type : Original Scientific Paper

Authors

Department of Mathematics, Mersin University, Mersin, Turkey

Abstract

A Sturm-Liouville problem with n-potential functions in the second order differential equation and which contains spectral parameter depending on linearly in one boundary condition is considered. The asymptotic formulas for the eigenvalues, nodal parameters (nodal points and nodal lengths) of this problem are calculated by the Prüfer's substitutions. Also, using these asymptotic formulas, an explicit formula for the potential functions are given. Finally, a numerical example is given.

Keywords


[1] V. Ala and Kh. R. Mamedov, On a discontinuous Sturm-Liouville problem with eigenvalue parameter in the boundary conditions, Dynamic Syst. Appl. 29 (2020) 182 − 191.
[2] V. A. Ambartsumyan, Über eine Frage der Eigenwerttheorie, Zeitschrift für Physik 53 (1929) 690 − 695.
[3] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th ed., Ginn, John Wiley & Sons, Boston, 1989.
[4] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math. 78 (1) (1946) 1 − 96.
[5] P. J. Browne and B. D. Sleeman, Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, Inverse Problems 12 (1996) 377 − 381.
[6] Y. T. Chen, Y. H. Cheng, C. K. Law and J. Tsay, L 1 Convergence of the reconstruction formula for the potential function, Proce. Amer. Math. Soc. 130 (2002) 2319 − 2324.
[7] I. M. Gelfand and B. M. Levitan, On the determination of a differential equation from its spectral function,Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 15 (4) (1951) 309 − 360.
[8] S. Goktas, H. Koyunbakan and T. Gulsen, Inverse nodal problem for polynomial pencil of Sturm-Liouville operator, Math. Methods Appl. Sci. 41 (2018) 7576 − 7582.
[9] I. M. Guseinov, A. A. Nabiev and R. T. Pashaev, Transformation operators and asymptotic formulas for the eigenvalues of a polynomial pencil of Sturm-Liouville operators, Sibirskii Matematicheskii Zhurnal 41 (2000) 554 − 566.
[10] I. M. Guseinov and A. A. Nabiev, A class of inverse problems for a quadratic pencil of Sturm-Liouville operators, Differentsial’nye Uravneniya 36 (3) (2000) 418 − 420.
[11] O. L. Hald and J. R. McLaughlin, Solutions of inverse nodal problems, Inverse Problems 5 (1989) 307 − 347.
[12] H. Hoschtadt, The inverse Sturm-Liouville problem, Commun. Pure Appl. Math. 26 (1973) 715 − 729.
[13] N. B. Kerimov and S. Goktas, E. A. Maris, Uniform convergence of the spectral expansions in terms of root functions for a spectral problem, EJDE 80 (2016) 1 − 14.
[14] N. B. Kerimov and E. A. Maris, On the uniform convergence of the Fourier Series for one spectral problem with a spectral parameter in a boundary condition, Math. Methods Appl. Sci. 39 (9) (2016) 2298 − 2309.
[15] N. B. Kerimov and E. A. Maris, On the uniform convergence of Fourier series expansions for Sturm-Liouville problems with a spectral parameter in the boundary conditions, Results Math. 73 (3) (2018) 102.
[16] H. Koyunbakan, Reconstruction of potential function for diffusion operator, Numer. Funct. Anal. Optim. 30 (1-2) (2009) 1 − 10.
[17] H. Koyunbakan, Inverse problem for a quadratic pencil of Sturm-Liouville operator, J. Math. Anal. Appl. 378 (2) (2011) 549 − 554.
[18] H. Koyunbakan and S. Mosazadeh, Inverse nodal problem for discontinuous Sturm-Liouville operator by new Prüfer Substitutions, Math. Sci. 15 (2021) (2021) 387 − 394.
[19] H. Koyunbakan and E. S. Panakhov, Half inverse problem for diffusion operators on the finite interval J. Math. Anal. Appl. 326 (2007) 1024 − 1030.
[20] H. Koyunbakan and E. Yilmaz, Reconstruction of the potential function and its derivatives for the diffusion operator Zeitschrift für Naturforschung A 63a (2008) 127 − 130.
[21] E. A. Maris and S. Goktas, On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition, HJMS 49 (4) (2020) 1373 − 1382.
[22] J. R. McLaughlin, Inverse spectral theory using nodal points as data-A uniqueness result J. Diff. Eqs. 73 (1988) 354 − 362.
[23] A. Neamaty and Y. Khalili, Determination of a differential operator with discontinuity from interior spectral data Inverse Probl. Sci. Eng. 22 (6) (2014) 1002 − 1008.
[24] A. Neamaty and Y. Khalili, The uniqueness theorem for differential pencils with the jump condition in the finite interval, Iranian J. Sci. Tech. (Sci.) 38 (3.1) (2014) 305 − 309.
[25] S. Mosazadeh and A. Akbarfam, On Hochstadt-Lieberman theorem for impulsive Sturm-Liouville problems with boundary conditions polynomially dependent on the spectral parameter Turkish J. Math. 44 (3) (2018) 778−790.
[26] A. A. Nabiev, On a fundamental system of solutions of the matrix schrödinger equation with a polynomial energy-dependent potential, Math. Methods Appl. Sci. 33 (11) (2010) 1372 − 1383.
[27] E. S. Panakhov, H. Koyunbakan and U. Ic, Reconstruction formula for the potential function of Sturm-Liouville problem with eigenparameter boundary condition, Inverse Probl. Sci. Eng. 18 (1) (2010) 173 − 180.
[28] J. P. Pinasco and C. A. Scarola, Nodal inverse problem for second order Sturm-Liouville operators with indefinite weights, Appl. Math. Comput. 256 (2015) 819 − 830.
[29] E. Şen, Computation of trace and nodal points of eigenfunctions for a Sturm-Liouville problem with retarded argument, Cumhuriyet Sci. J. 39 (3) (2018) 597 − 607.
[30] Y. P. Wang, Y. Hu and C. T. Shieh, The partial inverse nodal problem for differential pencils on a finite interval, Tamkang J. Math. 50 (3) (2019) 307− 319.
[31] Y. P. Wang and C. T. Shieh, X. Wei, Partial inverse nodal problems for differential pencils on a star-shaped graph, Math. Methods Appl. Sci. 43 (15) (2020) 8841 − 8855.
[32] C. -F. Yang, Inverse nodal problems for the Sturm-Liouville operator with a constant delay, J. Diff. Eqs. 257 (4) (2014) 1288 − 1306.
[33] E. Yilmaz and H. Koyunbakan, Reconstruction of potential function and its derivatives for Sturm-Liouville problem with eigenvalues in boundary condition, Inverse Prob. Sci. Eng. 18 (7) (2010) 935 − 944.