[1] V. Ala and Kh. R. Mamedov, On a discontinuous Sturm-Liouville problem with eigenvalue parameter in the boundary conditions, Dynamic Syst. Appl. 29 (2020) 182 − 191.
[2] V. A. Ambartsumyan, Über eine Frage der Eigenwerttheorie, Zeitschrift für Physik 53 (1929) 690 − 695.
[3] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th ed., Ginn, John Wiley & Sons, Boston, 1989.
[4] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math. 78 (1) (1946) 1 − 96.
[5] P. J. Browne and B. D. Sleeman, Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, Inverse Problems 12 (1996) 377 − 381.
[6] Y. T. Chen, Y. H. Cheng, C. K. Law and J. Tsay, L 1 Convergence of the reconstruction formula for the potential function, Proce. Amer. Math. Soc. 130 (2002) 2319 − 2324.
[7] I. M. Gelfand and B. M. Levitan, On the determination of a differential equation from its spectral function,Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 15 (4) (1951) 309 − 360.
[8] S. Goktas, H. Koyunbakan and T. Gulsen, Inverse nodal problem for polynomial pencil of Sturm-Liouville operator, Math. Methods Appl. Sci. 41 (2018) 7576 − 7582.
[9] I. M. Guseinov, A. A. Nabiev and R. T. Pashaev, Transformation operators and asymptotic formulas for the eigenvalues of a polynomial pencil of Sturm-Liouville operators, Sibirskii Matematicheskii Zhurnal 41 (2000) 554 − 566.
[10] I. M. Guseinov and A. A. Nabiev, A class of inverse problems for a quadratic pencil of Sturm-Liouville operators, Differentsial’nye Uravneniya 36 (3) (2000) 418 − 420.
[11] O. L. Hald and J. R. McLaughlin, Solutions of inverse nodal problems, Inverse Problems 5 (1989) 307 − 347.
[12] H. Hoschtadt, The inverse Sturm-Liouville problem, Commun. Pure Appl. Math. 26 (1973) 715 − 729.
[13] N. B. Kerimov and S. Goktas, E. A. Maris, Uniform convergence of the spectral expansions in terms of root functions for a spectral problem, EJDE 80 (2016) 1 − 14.
[14] N. B. Kerimov and E. A. Maris, On the uniform convergence of the Fourier Series for one spectral problem with a spectral parameter in a boundary condition, Math. Methods Appl. Sci. 39 (9) (2016) 2298 − 2309.
[15] N. B. Kerimov and E. A. Maris, On the uniform convergence of Fourier series expansions for Sturm-Liouville problems with a spectral parameter in the boundary conditions, Results Math. 73 (3) (2018) 102.
[16] H. Koyunbakan, Reconstruction of potential function for diffusion operator, Numer. Funct. Anal. Optim. 30 (1-2) (2009) 1 − 10.
[17] H. Koyunbakan, Inverse problem for a quadratic pencil of Sturm-Liouville operator, J. Math. Anal. Appl. 378 (2) (2011) 549 − 554.
[18] H. Koyunbakan and S. Mosazadeh, Inverse nodal problem for discontinuous Sturm-Liouville operator by new Prüfer Substitutions, Math. Sci. 15 (2021) (2021) 387 − 394.
[19] H. Koyunbakan and E. S. Panakhov, Half inverse problem for diffusion operators on the finite interval J. Math. Anal. Appl. 326 (2007) 1024 − 1030.
[20] H. Koyunbakan and E. Yilmaz, Reconstruction of the potential function and its derivatives for the diffusion operator Zeitschrift für Naturforschung A 63a (2008) 127 − 130.
[21] E. A. Maris and S. Goktas, On the spectral properties of a Sturm-Liouville problem with eigenparameter in the boundary condition, HJMS 49 (4) (2020) 1373 − 1382.
[22] J. R. McLaughlin, Inverse spectral theory using nodal points as data-A uniqueness result J. Diff. Eqs. 73 (1988) 354 − 362.
[23] A. Neamaty and Y. Khalili, Determination of a differential operator with discontinuity from interior spectral data Inverse Probl. Sci. Eng. 22 (6) (2014) 1002 − 1008.
[24] A. Neamaty and Y. Khalili, The uniqueness theorem for differential pencils with the jump condition in the finite interval, Iranian J. Sci. Tech. (Sci.) 38 (3.1) (2014) 305 − 309.
[25] S. Mosazadeh and A. Akbarfam, On Hochstadt-Lieberman theorem for impulsive Sturm-Liouville problems with boundary conditions polynomially dependent on the spectral parameter Turkish J. Math. 44 (3) (2018) 778−790.
[26] A. A. Nabiev, On a fundamental system of solutions of the matrix schrödinger equation with a polynomial energy-dependent potential, Math. Methods Appl. Sci. 33 (11) (2010) 1372 − 1383.
[27] E. S. Panakhov, H. Koyunbakan and U. Ic, Reconstruction formula for the potential function of Sturm-Liouville problem with eigenparameter boundary condition, Inverse Probl. Sci. Eng. 18 (1) (2010) 173 − 180.
[28] J. P. Pinasco and C. A. Scarola, Nodal inverse problem for second order Sturm-Liouville operators with indefinite weights, Appl. Math. Comput. 256 (2015) 819 − 830.
[29] E. Şen, Computation of trace and nodal points of eigenfunctions for a Sturm-Liouville problem with retarded argument, Cumhuriyet Sci. J. 39 (3) (2018) 597 − 607.
[30] Y. P. Wang, Y. Hu and C. T. Shieh, The partial inverse nodal problem for differential pencils on a finite interval, Tamkang J. Math. 50 (3) (2019) 307− 319.
[31] Y. P. Wang and C. T. Shieh, X. Wei, Partial inverse nodal problems for differential pencils on a star-shaped graph, Math. Methods Appl. Sci. 43 (15) (2020) 8841 − 8855.
[32] C. -F. Yang, Inverse nodal problems for the Sturm-Liouville operator with a constant delay, J. Diff. Eqs. 257 (4) (2014) 1288 − 1306.
[33] E. Yilmaz and H. Koyunbakan, Reconstruction of potential function and its derivatives for Sturm-Liouville problem with eigenvalues in boundary condition, Inverse Prob. Sci. Eng. 18 (7) (2010) 935 − 944.