Efficient Generation 1.5THz Pulses Using DASC/GaAs and DASB/GaAs Multilayer Structures via Difference Frequency Generation 1.5 µm Femtosecond Laser Pulses

Document Type : Original Scientific Paper


Department of Photonics, Faculty of Physics, University of Kashan, Kashan, I. R. Iran


We present a study of high efficient terahertz (THz) wave generation in DASB/GaAs, DASC/GaAs, and DAST/GaAs multilayer structures at 1.5THz via difference frequency generation (DFG) process with 1.5µm femtosecond laser pulses. We also compare the conversion efficiency in proposed structures with DASB/SiO2, DASC/SiO2, and DAST/SiO2 multilayer structures and bulk crystals DASB, DASC, and DAST. These structures compensate for phase mismatching in bulk crystals DASB, DASC, and DAST and increase conversion efficiency from 10-5 in bulk organic crystals up to 10-3 in multilayer structures. We show that DASC/GaAs is the best structure to generate 1.5THz waves.


Main Subjects

[1] F. D. J. Brunner, O. -P. Kwon, S. -J. Kwon, M. Jazbinšek, A. Schneider and P. Günter, A hydrogen-bonded organic nonlinear optical crystal for high efficiency terahertz generation and detection, Opt. Express 16 (21) (2008)16496  - 16508.
[2] P. D. Cunningham and L. Michael Hayden, Optical properties of DAST in the THz range, Opt. Express 18 (23) (2010) 23620 - 23625.
[3] C. Hunziker, S. -J. Kwon, H. Figi, F. Juvalta, O. -P. Kwon, M. Jazbinsek and P. Gunter, Configurationally locked, phenolic polyene organic crystal 2-f3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylideneg malononitrile: linear and nonlinear optical properties, J. Opt. Soc. Am. B 25 (10) (2008) 1678 - 1683.
[4] Y. -S. Lee, Principles of Terahertz Science and Technology, Springer New York, NY, USA, 2008.
[5] I. H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55 (10) (1965) 1205 - 1208.
[6] T. Matsukawa, Y. Mineno, T. Odani, S. Okada, T. Taniuchi and H. Nakanishi, Synthesis and terahertz-wave generation of mixed crystals composed of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenyl pyridinium p-toluenesulfonate and p-chlorobenzenesulfonate, J. Crystal Growth 299 (2) (2007) 344 - 348.
[7] T. Matsukawa, T. Notake, K. Nawata, S. Inada, S. Okada and H. Minamide, Terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium p-bromobenzenesulfonate crystal: Effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives, Opt. Mater. 36 (12) (2014) 1995 - 1999.
[8] T. Matsukawa, Y. Yoshida, A. Hoshikawa, S. Okada and T. Ishigaki, Neutron crystal structure analysis of stilbazulium derivatives for terahertz-wave generation, CrystEngComm 17 (13) (2015) 2616 - 2619.
[9] T. Matsukawa, M. Yoshimura, Y. Takahashi, Y. Takemoto, K. Takeya, I. Kawayama, S. Okada, M. Tonouchi, Y. Kitaoka, Y. Mori and T. Sasaki, Bulk crystal growth of stilbazolium derivatives for terahertz waves generation, Jpn. J. Appl. Phys. 49 (7R) (2010) 075502.
[10] A. G. Stepanov, L. Bonacina and J. -P. Wolf, DAST/SiO2 multilayer structure for efficient generation of 6THz quasi-single-cycle electromagnetic pulses, Opt. Letters 37 (13) (2012) 2439 - 2441.
[11] A. G. Stepanov, A. Rogov, L. Bonacina, J. -P. Wolf and C. P. Hauri, Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti: sapphire wavelength, Opt. Express 22 (18) (2014) 21618 - 21625.
[12] A. G. Stepanov, C. Ruchert, J. Levallois, C. Erny and C. P. Hauri, Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K, Opt. Mater. Express 4 (4) (2014) 870 - 875.
[13] T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada and H. Nakanishi, Terahertz properties of a new organic crystal, 4-Dimethylamino-N-methyl-4-stilbazolium pChlorobenzenesulfonate, Jpn. J. Appl. Phys. 44 (7L) (2005) L932 - L934.
[14] K. L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs, Laser & Photon. Rev. 2 (1-2) (2008) 11 - 25.
[15] H. R. Zangeneh and M. Kashani, Generation of high efficient quasi-singlecycle 3 and 6 THz pulses using multilayer structures OH1/SiO2 and DSTMS/SiO2, Math. Interdisc. Res. 3 (1) (2018) 1 - 13.