[1] R. Agarwal, D. ORegan and D. Sahu, Iterative construction of xed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1) (2007) 61 - 79.
[2] A. Akgül, A. Cordero and J. R. Torregrosa, A fractional Newton method with 2αth-order of convergence and its stability, Appl. Math. Letters 98 (2019) 344 - 351.
[3] M. Bisheh-Niasar and K. Gdawiec, Bisheh-NiasarSaadatmandi root finding method via the S-iteration with periodic parameters and its polynomiography, Math. Comput. Simul. 160 (2019) 1 - 12.
[4] M. Bisheh-Niasar and A. Saadatmandi, Some novel Newton-type methods for solving nonlinear equations, Bol. Soc. Parana. Mat. 38 (3) (2020) 111 - 123.
[5] G. Candelario, A. Cordero, J. R. Torregrosa and M. P. Vassileva, An optimal and low computational cost fractional Newton-type method for solving nonlinear equations, Appl. Math. Letters 124 (2022) 107650.
[6] G. Candelario, A. Cordero and J. R. Torregrosa, Multipoint fractional iterative methods with (2α + 1)th-order of convergence for solving nonlinear problems, Mathematics 8 (3) (2020) 452.
[7] A. Cordero, C. Jordán and J. R. Torregrosa, One-point Newton-type iterative methods: A unified point of view, J. Comput. Appl. Math. 275 (2015) 366 - 374.
[8] A. Cordero, I. Girona and J. R. Torregrosa, A variant of chebyshevs method with 3αth-order of convergence by using fractional derivatives, Symmetry 11 (8) 1017.
[9] K. Gdawiec, W. Kotarski and A. Lisowska, Polynomiography based on the nonstandard Newton-like root nding methods, Abstr. Appl. Anal. 2015 (2015) 797594.
[10] K. Gdawiec and W. Kotarski, Polynomiography for the polynomial innity norm via Kalantaris formula and nonstandard iterations, Appl. Math. Comput. 307 (2017) 17 - 30.
[11] K. Gdawiec, Polynomiography and various convergence tests, In: V. Skala (ed.), WSCG 2013 Communication Papers Proceedings, pages 15-20, Plzen, Czech Republic, 2013.
[12] K. Gdawiec, W. Kotarski and A. Lisowska, Visual analysis of the Newtons method with fractional order derivatives, Symmetry 11 (9) (2019) 1143.
[13] K. Gdawiec, W. Kotarski and A. Lisowska, Newtons method with fractional derivatives and various iteration processes via visual analysis, Numer. Algor. 86 (3) (2021) 953 - 1010.
[14] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (3) (1974) 147150.
[15] B. Kalantari, Polynomiography and applications in art, education and science, Comput. Graph. 28 (3) (2004) 417430.
[16] B. Kalantari, Polynomial Root-Finding and Polynomiography, World Scientific Publishing Co. Pt. Ltd., Singapore, 2009.
[17] W. Mann, Mean value methods in iteration, 2nd ed., Proc. Amer. Math. Soc. 4 (3) (1953) 506 - 510.
[18] V. Torkashvand, T. Lotfi and M. A. Fariborzi Araghi, A new family of adaptive methods with memory for solving nonlinear equations, Math. Sci. 13 (2019) 1 - 20.