[1] C. J. Bell, An Investigation into the Principles of the Classification and Analysis of Data of an Automatic Digital Computer, Ph.D. Thesis, Leeds University, UK, 1965.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 2nd Ed., MIT Press, USA, 2001.
[3] L. Devroye, Limit laws for local counters in random binary search trees, Random Struct. Algor. 2 (1991) 303 − 316.
[4] P. Hennequin, Analyse Enmoyenne D’algorithmes, Tri Rapide et Arbres de Recherche, Ph.D. Thesis, École Polytechnique, Palaiseau, 1991.
[5] C. A. R. Hoare, Quicksort, Comput. J. 5 (1962) 10 − 15.
[6] C. Holmgren and S. Janson, Limit laws for functions of fringe trees for binary search trees and random recursive trees, Electron. J. Probab. 20 (4) (2015) 1 − 51.
[7] V. Iliopoulos, A note on multipivot Quicksort, J. Info. Optim. Sci. 39 (2018) 1139 − 1147.
[8] V. Iliopoulos, The Quicksort Algorithm and Related Topics, PhD Thesis, Department of Mathematical Sciences, University of Essex, 2013.
[9] D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching, 2nd Ed., Addison-Wesley Publishing Company, Reading, MA, USA, 1998.
[10] M. Javanian and U. Röesler, Median Quicksort process, Probab. Eng. Inf. Sci. (2021) Submitted.
[11] H. M. Mahmoud, Sorting: A Distribution Theory, John Wiley & Sons, New York, 2000.
[12] R. Neininger and L. Rüschendorf, On the contraction method with degenerate limit equation, Ann. Probab. 32 (3B) (2004) 2838 − 2856.
[13] R. Neininger, Refined Quicksort asymptotics, Random Struct. Algor. 46 (2015) 346 − 361.
[14] H. M. Okasha and U. Röesler, Asymptotic distribution for random median Quicksort, J. Discrete Algor. 5 (2007) 592 − 608.
[15] S. Rachev and L. Rüschendorf, Probability metrics and recursive algorithms, Adv. Appl. Probab. 27 (1995) 770 − 799.
[16] S. Rachev, Probability Metrics and the Stability of Stochastic Models, John Wiley & Sons, New York, 1991.
[17] U. Röesler, A limit theorem for “Quicksort”, RAIRO Théor. Inform Appl. 25 (1991) 85 − 100.
[18] U. Röesler, On the analysis of stochastic divide and conquer algorithms, Algorithmica 29 (12) (2001) 238 − 261.
[19] U. Röesler and L. Rüschendorf, The contraction method for recursive algorithms, Algorithmica 29 (2001) 3 − 33.
[20] R. S. Scowen, Algorithm 271: Quickersort, Commun. ACM 8 (1965) 669−670.
[21] R. Sedgewick, Quicksort, Ph.D. Thesis, Garland Pub. Co., New York, 1980.
[22] R. C. Singleton, Algorithm 347: An efficient algorithm for sorting with minimal storage, Commun. ACM 12 (3) (1969) 185 − 186.
[23] K. H. Tan, An Asymptotic Analysis of the Number of Comparisons in Multipartition Quicksort, Ph.D. thesis, Carnegie Mellon University, 1993.
[24] A. Walker and D. Wood, Locally balanced binary trees, Comput. J. 19 (1976) 322 − 325.
[25] V. M. Zolotarev, Approximation of distributions of sums of independent random variables with values in infinite-dimensional spaces, Theory Probab. Appl. 21 (4) (1976) 721 − 737.