Improved Adaptive Stabilization Controller for an UPOs of Chaotic Systems‎~ ‎with an Optimal Principle by TDFC Method

Document Type : Original Scientific Paper

Authors

1 Department of Electrical Engineering, Tafresh University, Tafresh 39518-79611, Iran

2 Departments of Mathematics, Tafresh University, Tafresh 39518-79611, Iran

Abstract

‎In this paper‎, ‎we investigate an improved method for stabilizing a class of uncertain chaotic nonlinear dynamical system‎. ‎Our approach follows techniques of optimal principle for time-delayed feedback control and adaptive tracking control theory for stabilizing unstable periodic orbits in a chaotic bounded attractor‎. ‎The uncertain parameters expressed in the system can be separated‎. ‎Analysis and proof are presented using the Lyapunov stability theorem‎. ‎In particular‎, ‎we use the adaptive control theory to design an adaptive law for the estimation of uncertain time-delayed controlled chaotic nonlinear dynamical systems‎. ‎The predictions are presented by numerical simulation through the Rossler system to demonstrate theoretical results‎.

Keywords

Main Subjects


[1] T. Yang, C. M. Yang and L. B. Yang, A detailed study of adaptive control of chaotic systems with unknown parameters, Dyn. Contr. 8 (1998) 255 - 267, https://doi.org/10.1023/A:1008258403620.
[2] E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990) p. 1196, https://doi.org/10.1103/PhysRevLett.64.1196.
[3] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170 (1992) 421-428, https://doi.org/10.1016/0375-9601(92)90745-8.
[4] M. Tian and C. Duan, Synchronous control of neutral stochastic neural network with discrete and distributed delays based on delay feedback controller, Neural Process Lett. (2023) 1-16, https://doi.org/10.1007/s11063-022-11098-9.
[5] X. Guan, G. Feng, C. Chen and G. Chen, A full delayed feedback controller design method for time-delay chaotic systems, Phys. D: Nonlinear Phenom. 227 (2007) 36 - 42, https://doi.org/10.1016/j.physd.2006.12.009.
[6] H. S. Bauomy and A. T. EL-Sayed, Safety of a quarter-vehicle car through negative derivative feedback controller, Chaos Solit. Fractals 166 (2023) p. 112960, https://doi.org/10.1016/j.chaos.2022.112960.
[7] K. Pyragas and A. Tamaševicius, Experimental control of chaos by delayed self-controlling feedback, Phys. Lett. A. 180 (1993) 99 - 102, https://doi.org/10.1016/0375-9601(93)90501-P.
[8] A. S. Reis, E. L. Brugnago, R. L. Viana, A. M. Batista, K. C. Iarosz and I. L. Caldas, Effects of feedback control in small-world neuronal networks interconnected according to a human connectivity map, Neurocomputing 518 (2023) 321 - 331, https://doi.org/10.1016/j.neucom.2022.11.008.
[9] M. Di Bernardo, A purely adaptive controller to synchronize and control chaotic systems, Phys. Lett. A 214 (1996) 139 - 144, https://doi.org/10.1016/0375-9601(96)00182-X.
[10] Z. Yu, Y. Sun, X. Dai and X. Su, Decentralized time-delay control using partial variables with measurable states for a class of interconnected systems with time delays, IEEE Trans. Cybern. 52 (2022) 10882 - 10894,
https://doi.org/10.1109/TCYB.2021.3063163.
[11] H. N. Agiza and M. T. Yassen, Synchronization of Rossler and Chen chaotic dynamical systems using active control, Phys. Lett. A 278 (2001) 191 - 197, https://doi.org/10.1016/S0375-9601(00)00777-5.
[12] A. Buscarino, M. Frasca, M. Branciforte, L. Fortuna and J. C. Sprott, Synchronization of two Rössler systems with switching coupling, Nonlinear Dyn 88 (2017) 673 -683, https://doi.org/10.1007/s11071-016-3269-0.
[13] A. Jimenez-Triana, G. Chen and A. Gauthier, A parameterperturbation method for chaos control to stabilizing UPOs, IEEE Trans. Circuits Syst. II: Exp. Briefs, 62 (2015) 407 - 411, https://doi.org/10.1109/TCSII.2014.2387553.
[14] A. A. Hemed and Z. R. Gaiab, Chaotic dynamics for VCSEL subjected to time delayed and filtered injection using FBG array sensor, 2022 International Conference on Computer Science and Software Engineering (CSASE) (2022) 194 - 200, https://doi.org/10.1109/CSASE51777.2022.9759612.
[15] S. Mobayen and G. Pujol-Vázquez, A robust LMI approach on nonlinear feedback stabilization of continuous state-delay systems with Lipschitzian nonlinearities: experimental validation, Iran. J. Sci. Technol. Trans. Mech. Eng. 43 (2019) 549 - 558, https://doi.org/10.1007/s40997-018-0223-4.
[16] H. Layeghi, M. Tabe Arjmand, H. Salarieh and A. Alasty, Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control, Chaos Solit. Fractals. 37 (2008) 1125 - 1135, https://doi.org/10.1016/j.chaos.2006.10.021.
[17] D. Dmitrishin, P. Hagelstein, A. Khamitova and A. Stokolos, On the stability of cycles by delayed feedback control, Linear Multilinear Algebra 64 (2016) 1538 - 1549, https://doi.org/10.1080/03081087.2015.1102833.
[18] J. Zhang and W. Tang, Optimal control for a class of chaotic systems, J. Appl. Math. 2012 Article ID 859542, https://doi.org/10.1155/2012/859542.
[19] R. E. Mortensen, Stochastic optimal control with noisy observations, Int. J. Control 4 (1966) 455 - 464, https://doi.org/10.1080/00207176608921439.
[20] F. Zheng, Q. G. Wang and T. H. Lee, Adaptive robust control of uncertain time delay systems, Automatica 41 (2005) 1375 - 1383, https://doi.org/10.1016/j.automatica.2005.03.014.