The Effect of the Caputo Fractional Derivative on Polynomiography

Document Type : Original Scientific Paper

Author

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, ‎Kashan‎, ‎I‎. ‎R‎. ‎Iran

Abstract

‎This paper presents the visualization process of finding the roots of a complex polynomial‎ - ‎which is called polynomiography‎ - ‎by the Caputo fractional derivative‎. ‎In this work‎, ‎we substitute the variable-order Caputo fractional derivative for classic derivative in Newton's iterative method‎. ‎To investigate the proposed root-finding method‎, ‎we apply it for two polynomials $p(z)=z^5-1$ and $ p(z)=-2z^4+z^3+z^2-2z-1 $ on the complex plane and compute the MNI and CAI parameters‎.
‎Presented examples show that through the expressed process‎, ‎we can obtain very interesting fractal patterns‎. ‎The obtained patterns show that the proposed method has potential artistic application‎.

Keywords

Main Subjects


[1] M. Bisheh-Niasar and K. Gdawiec, Bisheh-Niasar–Saadatmandi root finding method via the S-iteration with periodic parameters and its polynomiography, Math. Comput. Simulation 160 (2019) 1 -12,
https://doi.org/10.1016/j.matcom.2018.11.012.
[2] B. Kalantari, Polynomiography and applications in art, education and science, Comput. Graph. 28 (3) (2004) 417 - 430,
https://doi.org/10.1016/j.cag.2004.03.009.
[3] M. Bisheh-Niasar and A. Saadatmandi, Some novel Newton-type methods for solving nonlinear equations, Bol. Soc. Parana. Mat. 38 (3) (2020) 111 - 123, https://doi.org/10.5269/bspm.v38i3.37351.
[4] A. Cordero, C. Jordán and J. R. Torregrosa, One-point Newton-type iterative methods: a unified point of view, J. Comput. Appl. Math. 275 (2015) 366 - 374, https://doi.org/10.1016/j.cam.2014.07.009.
[5] V. Torkashvand, T. Lotfi and M. A. Fariborzi Araghi, A new family of adaptive methods with memory for solving nonlinear equations, Math. Sci. 13 (2019) 1 - 20, https://doi.org/10.1007/s40096-018-0272-2.
[6] B. Kalantari, Polynomial Root-Finding and Polynomiography, World Scientific, Singapore, 2009.
[7] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506 - 510, http://doi.org/10.1090/S0002-9939-1953-0054846-3.
[8] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1) (1974) 147 - 150, https://doi.org/10.2307/2039245.
[9] R. Agarwal, D. O’Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1) (2007) 61 - 79.
[10] K. Gdawiec, W. Kotarski and A. Lisowska, Polynomiography based on the nonstandard newton-like root finding methods, Abstr. Appl. Anal. 2015 (2015) Article ID 797594, https://doi.org/10.1155/2015/797594.
[11] K. Gdawiec and W. Kotarski, Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations, Appl. Math. Comput. 307 (2017) 17 - 30, https://doi.org/10.1016/j.amc.2017.02.038.
[12] K. Gdawiec, Polynomiography and various convergence tests. In V. Skala, editor, WSCG 2013 Communication Papers Proceedings, pages 15–20, Plzen, Czech Republic, 2013. Vaclav Skala – Union Agency.
[13] K. Gdawiec, W. Kotarski and A. Lisowska, Visual analysis of the Newton’s method with fractional order derivatives, Symmetry 11 (9) (2019) p. 1143, https://doi.org/10.3390/sym11091143.
[14] K. Gdawiec, W. Kotarski and A. Lisowska, Newton’s method with fractional derivatives and various iteration processes via visual analysis, Numer. Algorithms 86 (3) (2021) 953-1010, https://doi.org/10.1007/s11075-020-00919-4.
[15] A. Akgül, A. Cordero and J. R. Torregrosa, A fractional Newton method with 2 th-order of convergence and its stability, Appl. Math. Lett. 98 (2019) 344 - 351, https://doi.org/10.1016/j.aml.2019.06.028.
[16] G. Candelario, A. Cordero and J. R. Torregrosa, Multipoint fractional iterative methods with (2  + 1)th-order of convergence for solving nonlinear problems, Mathematics 8 (3) (2020) p. 452, https://doi.org/10.3390/math8030452.
[17] A. Cordero, I. Girona and J. R. Torregrosa, A variant of Chebyshev’s method with 3 th-order of convergence by using fractional derivatives, Symmetry 11 (8) (2019) p. 1017, https://doi.org/10.3390/sym11081017.
[18] G. Candelario, A. Cordero, J. R. Torregrosa and M. P. Vassileva, An optimal and low computational cost fractional Newton-type method for solving nonlinear equations, Appl. Math. Lett. 124 (2022) p. 107650,
https://doi.org/10.1016/j.aml.2021.107650.