[1] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1917) 221 - 229, https://doi.org/10.1007/BF01457099.
[2] D. J. Saltman, Noether’s problem over an algebraically closed field, Invent Math. 77 (1984) 71 - 84, https://doi.org/10.1007/BF01389135.
[3] F. A. Bogomolov, The Brauer group of quotient spaces by linear group actions, Math. USSR Izv. 30 (1988) p. 455,
https://doi.org/10.1070/IM1988v030n03ABEH001024.
[4] B. Kunyavski˘ı, The Bogomolov multiplier of finite simple groups, Cohomological and geometric approaches to rationality problems, Progr. Math. 282, 209 - 217, Birkhauser Boston, Inc, Boston, MA, 2010.
[5] P. Moravec, Unramified brauer groups of finite and infinite groups, Amer. J. Math. 134 (2012) 1679 - 1704.
[6] U. Jezernik and P. Moravec, Universal commutator relations, Bogomolov multipliers, and commuting probability, J. Algebra 428 (2015) 1 - 25, https://doi.org/10.1016/j.jalgebra.2014.12.034.
[7] U. Jezernik and P. Moravec, Commutativity preserving extensions of groups, Proc. R. Soc. Edinb. A: Math. 148 (2018) 575 - 592,
https://doi.org/10.1017/S0308210517000270.
[8] Z. A. Rostami, M. Parvizi and P. Niroomand, The Bogomolov multiplier of Lie algebras, Hacet. J. Math. Stat. 49 (2020) 1190 - 1205, https://doi.org/10.15672/hujms.455076.
[9] Z. A. Rostami, M. Parvizi and P. Niroomand, Bogomolov multiplier and lazard correspondence, Commun Algebra 48 (2020) 1201 - 1211, https://doi.org/10.1080/00927872.2019.1677694.
[10] D. Groves, Problem in Lie Rings and Groups, PhD diss., University of Oxford, 2000.
[11] V. Naik, Lazard Correspondence up to Isoclinism, PhD diss., The University of Chicago, 2013.
[12] G. Ellis, Non-abelian exterior products of Lie algebras and an exact sequence in the homology of Lie algebras, J. Pure Appl. Algebra 46 (1987) 111 - 115, https://doi.org/10.1016/0022-4049(87)90088-0.
[13] B. Eick, M. Horn and S. Zandi, Schur multipliers and the Lazard correspondence, Arch. Math. 99 (2012) 217-226,
https://doi.org/10.1007/s00013-012- 0426-7.
[14] P. Hall, The classification of prime-power groups, J. für die Reine und Angew. Math. 182 (1940) 130 - 141, https://doi.org/10.1515/crll.1940.182.130.
[15] K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom. 11 (1994) 9 - 22.