Virtual‎ ‎Element‎ ‎Method‎ ‎for‎ Numerical Simulation of Burgers-Fisher Equation on Convex‎ ‎and Non-Convex Meshes

Document Type : Original Scientific Paper


‎Department of Applied Mathematics‎, Faculty of Mathematical Sciences, ‎University of Mazandaran,‎ Babolsar‎, ‎I‎. ‎R‎. ‎Iran


‎We present an enhanced approach to solving the combined non-linear time-dependent Burgers-Fisher equation‎, ‎which is widely used in mathematical biology and has a broad range of applications‎. ‎Our proposed method employs a modified version of the finite element method‎, ‎specifically the virtual element method‎, ‎which is a robust numerical approach‎. ‎We introduce a virtual process and an Euler-backward scheme for discretization in the spatial and time directions‎, ‎respectively‎. ‎Our numerical scheme achieves optimal error rates based on the degree of our virtual space‎, ‎ensuring high accuracy‎. ‎We evaluate the efficiency and flexibility of our approach by providing numerical results on both convex and non-convex polygonal meshes‎. ‎Our findings indicate that the proposed method is a promising tool for solving non-linear time-dependent equations in mathematical biology‎.


Main Subjects

[1] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7 (1937) 355 -369,
[2] J. E. Macías-Díaz and A. E. González, A convergent and dynamically consistent finite-difference method to approximate the positive and bounded solutions of the classical Burgers-Fisher equation, J. Comput. Appl. Math. 318 (2017) 604 - 615,
[3] P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983) 485 - 509,
[4] O. P. Yadav and R. Jiwari, Finite element analysis and approximation of Burgers-Fisher equation, Numer. Methods Partial Differential Equations 33 (2017) 1652 - 1677,
[5] A. Yazdani, N. Mojahed, A. Babaei and E. V. Cendon, Using finite volume-element method for solving space fractional advectiondispersion equation, Prog. Fract. Differ. Appl. 6 (2020) 55 - 66,
[6] P. F. Antonietti, G. Manzini and M. Verani, The conforming virtual element method for polyharmonic problems, Comput. Math. Appl. 79 (2020) 2021 -2034,
[7] D. van Huyssteen and B. D. Reddy, The incorporation of mesh quality in the stabilization of virtual element methods for nonlinear elasticity, Comput. Methods Appl. Mech. Engrg. 392 (2022) p. 114720,
[8] M. Li, Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger-Boussinesq equations, J. Sci. Comput. 93 (2022) p. 86,
[9] M. Li, L. Wang and N. Wang, Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations, Appl. Numer. Math. 186 (2023) 378 - 410,
[10] S. Berrone, A. Borio and G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng. 340 (2018) 500 - 529,
[11] L. Beirão da Veiga, K. Lipnikov and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal. 49 (2011) 1737 - 1760,
[12] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005) 1872 - 1896,
[13] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214,
[14] L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (2014) 1541 - 1573,
[15] D. Adak, E. Natarajan and S. Kumar, Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations 35 (2019) 222 - 245,
[16] M. Li, J. Zhao, C. Huang and S. Chen, Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data, J. Sci. Comput. 81 (2019) 1823 - 1859,
[17] M. Li, J. Zhao, C. Huang and S. Chen, Conforming and nonconforming VEMs for the fourth-order reaction-subdiffusion equation: a unified framework, IMA J. Numer. Anal. 42 (2022) 2238 - 2300,
[18] G. Vacca and L. Beirão da Veiga, Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations 31 (2015) 2110 - 2134,
[19] H. Chi, C. Talischi, O. Lopez-Pamies and G. H. Paulino, Polygonal finite elements for finite elasticity, Int. J. Numer. Methods Eng. 101 (2015) 305 -328,
[20] S. W. Wu, G. R. Liu, C. Jiang, X. Liu, K. Liu, D. T. Wan and J. H. Yue, Arbitrary polygon mesh for elastic and elastoplastic analysis of solids using smoothed finite element method, Comput. Methods Appl. Mech. Eng. 405
(2023) p. 115874,