Virtual‎ ‎Element‎ ‎Method‎ ‎for‎ Numerical Simulation of Burgers-Fisher Equation on Convex‎ ‎and Non-Convex Meshes

Document Type : Original Scientific Paper

Authors

‎Department of Applied Mathematics‎, Faculty of Mathematical Sciences, ‎University of Mazandaran,‎ Babolsar‎, ‎I‎. ‎R‎. ‎Iran

Abstract

‎We present an enhanced approach to solving the combined non-linear time-dependent Burgers-Fisher equation‎, ‎which is widely used in mathematical biology and has a broad range of applications‎. ‎Our proposed method employs a modified version of the finite element method‎, ‎specifically the virtual element method‎, ‎which is a robust numerical approach‎. ‎We introduce a virtual process and an Euler-backward scheme for discretization in the spatial and time directions‎, ‎respectively‎. ‎Our numerical scheme achieves optimal error rates based on the degree of our virtual space‎, ‎ensuring high accuracy‎. ‎We evaluate the efficiency and flexibility of our approach by providing numerical results on both convex and non-convex polygonal meshes‎. ‎Our findings indicate that the proposed method is a promising tool for solving non-linear time-dependent equations in mathematical biology‎.
 

Keywords

Main Subjects


[1] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7 (1937) 355 -369, https://doi.org/10.1111/j.1469-1809.1937.tb02153.x.
[2] J. E. Macías-Díaz and A. E. González, A convergent and dynamically consistent finite-difference method to approximate the positive and bounded solutions of the classical Burgers-Fisher equation, J. Comput. Appl. Math. 318 (2017) 604 - 615, https://doi.org/10.1016/j.cam.2015.11.018.
[3] P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983) 485 - 509, https://doi.org/10.1137/0720033.
[4] O. P. Yadav and R. Jiwari, Finite element analysis and approximation of Burgers-Fisher equation, Numer. Methods Partial Differential Equations 33 (2017) 1652 - 1677, https://doi.org/10.1002/num.22158.
[5] A. Yazdani, N. Mojahed, A. Babaei and E. V. Cendon, Using finite volume-element method for solving space fractional advectiondispersion equation, Prog. Fract. Differ. Appl. 6 (2020) 55 - 66, http://dx.doi.org/10.18576/pfda/060106.
[6] P. F. Antonietti, G. Manzini and M. Verani, The conforming virtual element method for polyharmonic problems, Comput. Math. Appl. 79 (2020) 2021 -2034, https://doi.org/10.1016/j.camwa.2019.09.022.
[7] D. van Huyssteen and B. D. Reddy, The incorporation of mesh quality in the stabilization of virtual element methods for nonlinear elasticity, Comput. Methods Appl. Mech. Engrg. 392 (2022) p. 114720, https://doi.org/10.1016/j.cma.2022.114720.
[8] M. Li, Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger-Boussinesq equations, J. Sci. Comput. 93 (2022) p. 86, https://doi.org/10.1007/s10915-022-02050-z.
[9] M. Li, L. Wang and N. Wang, Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations, Appl. Numer. Math. 186 (2023) 378 - 410, https://doi.org/10.1016/j.apnum.2023.01.022.
[10] S. Berrone, A. Borio and G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng. 340 (2018) 500 - 529, https://doi.org/10.1016/j.cma.2018.05.027.
[11] L. Beirão da Veiga, K. Lipnikov and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal. 49 (2011) 1737 - 1760, https://doi.org/10.1137/100807764.
[12] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005) 1872 - 1896, https://doi.org/10.1137/040613950.
[13] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214, https://doi.org/10.1142/S0218202512500492.
[14] L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (2014) 1541 - 1573, https://doi.org/10.1142/S021820251440003X.
[15] D. Adak, E. Natarajan and S. Kumar, Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations 35 (2019) 222 - 245, https://doi.org/10.1002/num.22298.
[16] M. Li, J. Zhao, C. Huang and S. Chen, Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data, J. Sci. Comput. 81 (2019) 1823 - 1859, https://doi.org/10.1007/s10915-019-
01064-4.
[17] M. Li, J. Zhao, C. Huang and S. Chen, Conforming and nonconforming VEMs for the fourth-order reaction-subdiffusion equation: a unified framework, IMA J. Numer. Anal. 42 (2022) 2238 - 2300, https://doi.org/10.1093/imanum/drab030.
[18] G. Vacca and L. Beirão da Veiga, Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations 31 (2015) 2110 - 2134, https://doi.org/10.1002/num.21982.
[19] H. Chi, C. Talischi, O. Lopez-Pamies and G. H. Paulino, Polygonal finite elements for finite elasticity, Int. J. Numer. Methods Eng. 101 (2015) 305 -328, https://doi.org/10.1002/nme.4802.
[20] S. W. Wu, G. R. Liu, C. Jiang, X. Liu, K. Liu, D. T. Wan and J. H. Yue, Arbitrary polygon mesh for elastic and elastoplastic analysis of solids using smoothed finite element method, Comput. Methods Appl. Mech. Eng. 405
(2023) p. 115874, https://doi.org/10.1016/j.cma.2022.115874.