A Gauge Theory for Extra Dimension Detecting by Point Particle

Document Type : Original Scientific Paper

Authors

1 ‎Department of Physics‎, ‎‎University of Kashan, ‎Kashan‎, ‎I‎. ‎R‎. ‎Iran

2 ‎Department of Physics‎, ‎Faculty of Science, ‎Shahrekord University, ‎Shahrekord‎, ‎I‎. ‎R‎. ‎Iran

Abstract

‎From the viewpoint of‎ "‎extra dimension detecting,‎" ‎the phenomenon of the transition of the free point particle into 3d space is investigated‎. ‎In this way‎, ‎we formulate the problem using the second-class constrained system‎. ‎To investigate it using a gauge theoretical approach‎, ‎we use two methods to convert its two second-class constraints to first-class ones‎. ‎In symplectic embedding‎, ‎we construct a pair of scaler and vector gauge potentials‎, ‎which can be interpreted as interactions for detecting extra dimensions‎. ‎A Wess-Zumino variable appears as a new coordinate in potentials‎, ‎and the particle's mass plays the role of a globally conserved charge related to the constructed gauge theory for extra dimensions‎.

Keywords

Main Subjects


[1] P. A. M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950) 129 - 148, https://doi.org/10.4153/CJM-1950-012-1.
[2] P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University Press, New York, 1964.
[3] P. C. Schuster and R. L. Jaffe, Quantum mechanics on manifolds embedded in Euclidean space, Ann. Phys. 307 (2003) 132 - 143, https://doi.org/10.1016/S0003-4916(03)00080-0.
[4] L. Meschede, B. Schwager, D. Schulz and J.Berakdar, Quantum scattering of spinless particles in Riemannian manifolds, Phys. Rev. A 107 (2023) p.062806, https://doi.org/10.1103/PhysRevA.107.062806.
[5] G. H. Liang and M. Y. Lai, Effective quantum dynamics in curved thin-layer systems with inhomogeneous confinement, Phys. Rev. A 107 (2023) p. 022213, https://doi.org/10.1103/PhysRevA.107.022213.
[6] Z. Li, L. Q. Lai, Y. Zhong and Q. H. Liu, The curvature-induced gauge potential and the geometric momentum for a particle on a hypersphere, Ann. Phys. 432 (2021) p. 168566, https://doi.org/10.1016/j.aop.2021.168566.
[7] Q. H. Liu, Z. Li, X. Y. Zhou, Z. Q. Yang and W. K. Du, Generally covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere, Eur. Phys. J. C 79 (2019) p. 712, https://doi.org/10.1140/epjc/s10052-019-7231-4.
[8] Y. L. Wang, H. Zhao, H. Jiang, H. Liu and Y. F. Chen, Geometry-induced monopole magnetic field and quantum spin Hall effects, Phys. Rev. B 106 (2022) p. 235403, https://doi.org/10.1103/PhysRevB.106.235403.
[9] M. Monemzadeh, A. S. Ebrahimi, S. Sramadi and M. Dehghani, Gauging of non-Abelian Chern–Simons model, Mod. Phys. Lett. A 29 (2014) p. 1450028, https://doi.org/10.1142/S021773231450028X.
[10] M. Dehghani, Gauged Hamiltonians for free particle on surfaces in configuration and phase spaces, Iran. J. Phys. Res. 16 (2016) 7 - 12, https://doi.org/10.18869/acadpub.ijpr.16.1.7.
[11] I. A. Batalin and E. S. Fradkin, Operational quantization of dynamical systems subject to second class constraints, Nucl. Phys. B 279 (1987) 514-528, https://doi.org/10.1016/0550-3213(87)90007-1.
[12] A. Shirzad and M. Monemzadeh, The BFT method with chain structure, Phys. Lett. B 584 (2004) 220 - 224,
https://doi.org/10.1016/j.physletb.2004.01.047.
[13] I. A. Batalin, E. S. Fradkin and T. E. Fradkina, Another version for operatorial quantization of dynamical systems with irreducible constraints, Nucl. Phys. B 314 (1989) 158-174, https://doi.org/10.1016/0550-3213(89)90116-8.
[14] M. Monemzadeh and A . Shirzad, Batalin-Fradkin-Tyutin method for mixed constrained systems and Chern-Simons theory, Phys. Rev. D 72 (2005) p. 045004, https://doi.org/10.1103/PhysRevD.72.045004.
[15] L. Faddeev and R. Jackiw, Hamiltonian reduction of unconstrained and constrained systems, Phys. Rev. Lett. 60 (1988) p. 1692, https://doi.org/10.1103/PhysRevLett.60.1692.
[16] E. M. C. Abreu, J. Ananias Neto, A. C. R. Mendes, C. Neves and W. Oliveira, Obtaining gauge invariant actions via symplectic embedding formalism, Ann. Phys. (Berlin) 524 (2012) 434 - 455, https://doi.org/10.1002/andp.201100199.
[17] J. Barcelos-Neto, C. Wotzasek, Symplectic quantization of constrained systems, Mod. Phys. Lett. A 7 (1992) 1737 - 1747, https://doi.org/10.1142/S0217732392001439.
[18] P. Mitra and R. Rajaraman, Gauge-invariant reformulation of theories with second-class constraints, Ann. Phys. 203 (1990) 157 - 172, https://doi.org/10.1016/0003-4916(90)90031-I.
[19] A. S. Vytheeswaran, Gauge unfixing in second-class constrained systems, Ann. Phys. 236 (1994) 297 - 324, https://doi.org/10.1006/aphy.1994.1114.
[20] J. A. Neto, W. D. Morais and R. Thibes, Improved gauge-unfixing formalism through a prototypical second-class system, Eur. Phys. Lett. 141 (2023) p. 22001, https://doi.org/10.1209/0295-5075/acad99.
[21] J. E. Paschalis and P. I. Porfyriadis, The complete Faddeev-Jackiw treatment of the UEM(1) gauged SU(2) WZW model, Phys. Lett. B 390 (1997) 197 -204, https://doi.org/10.1016/S0370-2693(96)01410-4.
[22] S. A. Nejad, M. Dehghani and M. Monemzadeh, Lagrange multiplier and Wess-Zumino variable as extra dimensions in the torus universe, J. High Energ. Phys. 2018 (2018) 1 - 33, https://doi.org/10.1007/JHEP01(2018)017.
[23] S. A. Nejad, M. Dehghani and M. Monemzadeh, Spinning toroidal brane cosmology; A classical and quantum survey, Nucl. Phys. B 950 (2020) p. 114871, https://doi.org/10.1016/j.nuclphysb.2019.114871.