Timeline and Wavelets Method for Pricing Cash-or-Nothing Options

Document Type : Original Scientific Paper

Authors

1 ‎Department of Mathematics,‎ ‎Khansar Campus‎, ‎University of Isfahan, ‎Isfahan‎, ‎I‎. ‎R‎. ‎Iran

2 ‎Department of Mathematics and Statistics,‎ University of Vaasa, ‎P.O‎. ‎Box 700‎, ‎Fin-65101 Vaasa‎, ‎Finland

Abstract

This study investigates the application of the Haar wavelet method as an innovative and effective approach for valuing financial derivatives‎, ‎particularly cash-or-nothing options‎. ‎Valuing derivatives is a complex task in finance‎, ‎requiring advanced numerical methods that can adapt to various models and scenarios‎. ‎Cash-or-nothing options are popular for their simplicity and cost-effectiveness in market speculation and risk hedging‎, ‎but their pricing is challenging due to several influencing factors‎. ‎The study provides a comprehensive overview of the Haar wavelet method‎, ‎demonstrating through numerical examples its precision and stability in option pricing‎. ‎Additionally‎, ‎it examines critical risk parameters‎, ‎such as delta and gamma‎, ‎essential for managing and hedging risks associated with these options.

Keywords

Main Subjects


[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ. 81 (1973) 637 - 654:
[2] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer Science & Business Media, 2004.
[3] P. Wilmott, Paul Wilmott Introduces Quantitative Finance, John Wiley & Sons, 2007.
[4] D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, John Wiley & Sons, 2013.
[5] J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: a simplified approach, J. Financ. Econ. 7 (1979) 229 - 263, https://doi.org/10.1016/0304-405X(79)90015-1.
[6] R. Geske and H. E. Johnson, The american put option valued analytically, J. Finance. 39 (1984) 1511 - 1524, https://doi.org/10.1111/j.1540-6261.1984.tb04921.x.
[7] S. Vahdati, M. R. Ahmadi Darani and M. R. Ghanei, Haar wavelet-based valuation method for pricing European options, Comput. Methods Differ. Equ. 11 (2023) 281 - 290, https://doi.org/10.22034/CMDE.2022.52027.2177.
[8] S. Vahdati, A wavelet method for stochastic Volterra integral equations and its application to general stock model, Comput. Methods Differ. Equ. 5 (2017) 170 -188.
[9] A. Cifter, Value-at-risk estimation with wavelet-based extreme value theory: evidence from emerging markets, Physica A Stat. Mech. Appl. 390 (2011) 2356 - 2367, https://doi.org/10.1016/j.physa.2011.02.033.
[10] L. Ortiz-Gracia and C. W. Oosterlee, Robust pricing of European options with wavelets and the characteristic function, SIAM J. Sci. Comput. 35 (2013) B1055 - B1084, https://doi.org/10.1137/130907288.
[11] L. Meng, M. Kexin, X. Ruyi, S. Mei and C. Cattani, Haar wavelet transform and variational iteration method for fractional option pricing models, Math. Methods Appl. Sci. 46 (2023) 8408-8417, https://doi.org/10.1002/mma.8343.
[12] D. Kumar and K. Deswal, Haar-wavelet based approximation for pricing American options under linear complementarity formulations, Numer. Methods Partial Differential Equations 37 (2021) 1091 - 1111, https://doi.org/10.1002/num.22568.
[13] D. Kumar and K. Deswal, Two-dimensional Haar wavelet based approximation technique to study the sensitivities of the price of an option, Numer. Methods Partial Differential Equations 38 (2022) 1195 - 1214, https://doi.org/10.1002/num.22729.
[14] B. Salehi, L. Torkzadeh and K. Nouri, Chebyshev cardinal wavelets for nonlinear volterra integral equations of the second kind, Math. Interdisc. Res. 7 (2022) 281 - 299, https://doi.org/ 10.22052/MIR.2022.243395.1325.
[15] O. Belhamiti and B. Absar, A numerical study of fractional order reverse osmosis desalination model using legendre wavelet approximation, Iranian J. Math. Chem. 8 (2017) 345 - 364, https://doi.org/10.22052/IJMC.2017.86494.1289.
[16] D. J. Higham, An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation, Cambridge University Press, 2004.
[17] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910) 331 - 371, https://doi.org/10.1007/BF01456326.
[18] S. -u. Islam, I. Aziz and A. S. Al-Fhaid, An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders, J. Comput. Appl. Math. 260 (2014) 449-
469, https://doi.org/10.1016/j.cam.2013.10.024.