Reformulated Zagreb Indices of Trees

Document Type : Original Scientific Paper

Author

‎Department of Mathematics and Computer Science,‎ Sirjan University of Technology, Sirjan‎, I. R. ‎Iran

Abstract

‎Zagreb indices were reformulated in terms of the edge degrees instead of the vertex degrees‎. For a graph $G$‎, ‎the first and second reformulated Zagreb indices are defined respectively as‎:
‎$$EM_1(G)=\sum_{\varepsilon\in E(G)}d^2(\varepsilon), EM_2(G)=\sum_{\varepsilon,\varepsilon'\in E(G),\,\varepsilon\sim \varepsilon'}d(\varepsilon)\,d(\varepsilon'),$$‎ where $d(\varepsilon)$ and $d(\varepsilon')$ denote the degree of the edges $\varepsilon$ and $\varepsilon'$ respectively‎, ‎and $\varepsilon\sim \varepsilon'$ means that the edges $\varepsilon$ and $\varepsilon'$ are adjacent‎. In this paper‎, ‎we obtain sharp lower bounds on the first and second reformulated Zagreb‎ indices with a given number of vertices and maximum degree‎. ‎Furthermore‎, ‎we will determine the extremal trees that achieve these lower bounds‎.
 

Keywords

Main Subjects


[1] I. Gutman, B. Rušcic, N. Trinajstic and C. F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399 -3405, https://doi.org/10.1063/1.430994.
[2] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternate hydrocarbons, Chem. Phys. Lett. 17 (1972) 535 - 538, https://doi.org/10.1016/0009-2614(72)85099-1.
[3] B. Basavanagoud and S. Patil, A note on hyper-Zagreb index of graph operations, Iranian J. Math. Chem. 7 (2016) 89 - 92, https://doi.org/10.22052/IJMC.2016.12405.
[4] B. Borovicanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17 - 100.
[5] N. Dehgardi, A note on the re-defined third Zagreb index of trees, Commun. Comb. Optim. (In press) https://doi.org/ 10.22049/CCO.2023.28868.1757.
[6] N. Dehgardi and T. Došlic, Lower bounds on the general first Zagreb index of graphs with low cyclomatic number, Discrete Appl. Math. 345 (2024) 52-61, https://doi.org/10.1016/j.dam.2023.11.033.
[7] R. Kazemi, A. Behtoei and A. Kohansal, The Zagreb index of bucket recursive trees, Math. Interdisc. Res. 5 (2020) 103 - 111, https://doi.org/10.22052/MIR.2020.204312.1166.
[8] A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2 (2017) 99 - 117,
https://doi.org/10.22049/cco.2017.25949.1059.
[9] R. Rasi, S. M. Sheikholeslam and A. Behmaram, Trees with extreme values of second Zagreb index and coindex, Math. Interdisc. Res. 4 (2019) 227-238, https://doi.org/10.22052/MIR.2018.130441.1100.
[10] A. Milicevic, S. Nikolic and N. Trinajstic, On reformulated Zagreb indices, Mol. Divers. 8 (2004) 393 - 399,
https://doi.org/10.1023/b:modi.0000047504.14261.2a.
[11] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci. 6 (2012) 5005 - 5012.
[12] A. Ilic and B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math. 160 (2012) 204 - 209, https://doi.org/10.1016/j.dam.2011.09.021.
[13] B. Zhou and N. Trinajstic, Some properties of the reformulated Zagreb indices, J. Math. Chem. 48 (2010) 714 - 719, https://doi.org/10.1007/s10910-010-9704-4.
[14] A. Ghalavand and A. R. Ashrafi, Extremal trees with respect to the first and second reformulated Zagreb index, Malaya J. Mat. 5 (2017) 524 - 530, https://doi.org/10.26637/mjm503/006.
[15] S. Ji, X. Li and B. Huo, On reformulated Zagreb indices with respect to acyclic, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 723 - 732.
[16] M. K. Jamil and I. Tomescu, First reformulated Zagreb index and some graph operations, Ars Comb. 138 (2018) 193 - 209.
[17] S. Ji, Y. Qu and X. Li, The reformulated Zagreb indcies of tricyclic graphs, Appl. Math. Comput. 268 (2015) 590 - 595,
https://doi.org/10.1016/j.amc.2015.06.058.
[18] E. I. Milovanovic, I. Z. Milovanovic, E. C. Dolicanin and E. Glogic, A note on the first reformulated Zagreb index, Appl. Math. Comput. 273 (2016) 16-20, https://doi.org/10.1016/j.amc.2015.09.088.
[19] G. Su, L. Xiong, L. Xu and B. Ma, On the maximum and minimum first reformulated Zagreb index of graphs with connectivity at most k, Filomat 25 (2011) 75 - 83.