Solving‎ ‎Linear and‎ ‎Nonlinear Duffing‎ ‎Fractional Differential Equations Using Cubic Hermite Spline Functions

Document Type : Original Scientific Paper

Authors

1 Department of Applied Mathematics, ‎Faculty of Mathematics‎, Statistics and Computer Science,‎‎ University of Tabriz‎, ‎‎Tabriz‎, ‎I‎. ‎R‎. ‎Iran

2 Department of Mathematics, ‎Faculty of Science‎, ‎University of Jiroft, ‎Jiroft‎, ‎I‎. ‎R‎. ‎Iran

Abstract

‎In this work‎, ‎we solve nonlinear Duffing fractional differential equations with integral boundary conditions in the Caputo fractional order derivative sense‎. ‎First‎, ‎we introduce the cubic Hermite spline functions and give some properties of these functions‎. ‎Then we make an operational matrix to the fractional derivative in the Caputo sense‎. Using this matrix and derivative matrices of integers (first and second order) and applying collocation method‎, ‎we convert nonlinear Duffing equations into a system of algebraic equations that can be solved to find the approximate solution‎. Numerical examples show the applicability and efficiency of the suggested method‎. ‎Also‎, ‎we give a numerical convergence order for the presented method in this part‎.

Keywords

Main Subjects


[1] B. Ahmad, S. K. Ntouyas and A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals 83 (2016) 234 - 241, https://doi.org/10.1016/j.chaos.2015.12.014.
[2] M. R. Doostdar, M. Kazemi and A. Vahidi, A numerical method for solving the Duffing equation involving both integral and non-integral forcing terms with separated and integral boundary conditions, Comput. Methods Differ. Equ. 11 (2023) 241-253, https://doi.org/ 10.22034/CMDE.2022.50054.2082.
[3] M. Chai and L. Ba, Application of EEG signal recognition method based on Duffing equation in psychological stress analysis, Adv. Math. Phys. 2021 (2021) #1454547, https://doi.org/10.1155/2021/1454547.
[4] A. A. Cherevko, E. E. Bord, A. K. Khe, V. A. Panarin and K. J. Orlov, The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics, J. Phys.: Conf. Ser. 894 (2017) #012012, https://doi.org/10.1088/1742-6596/894/1/012012.
[5] R. Srebro, The Duffing oscillator: a model for the dynamics of the neuronal groups comprising the transient evoked potential, Electroencephalogr. Clin. Neurophysiol. 96 (1995) 561 - 573, https://doi.org/10.1016/0013- 4694(95)00088-G.
[6] B. Ahmad and A. Alsaedi, Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl. 10 (2009) 358 - 367, https://doi.org/10.1016/j.nonrwa.2007.09.004.
[7] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. Theory Methods Appl. 70 (2009) 364 - 371, https://doi.org/10.1016/j.na.2007.12.007.
[8] A. Saadatmandi and S. Yeganeh, New approach for the Duffing equation involving both integral and non-integral forcing terms, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017) 46 - 52.
[9] Z. Chen, W. Jiang and H. Du, A new reproducing kernel method for Duffing equations, Int. J. Comput. Math. 98 (2021) 2341 - 2354, https://doi.org/10.1080/00207160.2021.1897111.
[10] F. Deutsch, Best Approximation in Inner Product Spaces, Springer, New York, 2001.
[11] S. Mashayekhi, Y. Ordokhani and M. Razzaghi, A hybrid functions approach for the Duffing equation, Phys. Scr. 88 (2013) #025002, https://doi.org/10.1088/0031-8949/88/02/025002.
[12] A. Noori Dalawi, M. Lakestani and E. Ashpazzadeh, An efficient algorithm for the multi-scale solution of nonlinear fractional optimal control problems, Mathematics 10 (2022) #3779, https://doi.org/10.3390/math10203779.
[13] E. Ashpazzadeh, M. Lakestani and M.Razzaghi, Nonlinear constrained optimal control problems and cardinal Hermite interpolant multiscaling functions, Asian J. Control. 20 (2018) 558 - 567, https://doi.org/10.1002/asjc.1526.
[14] R. Akbari and L. Navaei, Fractional dynamics of infectious disease transmission with optimal control, Math. Interdisc. Res. 9 (2024) 199 - 213, https://doi.org/10.22052/MIR.2023.253000.1410.
[15] S. Shahmorad, S. Pashaei and M. S. Hashemi, Numerical solution of a nonlinear fractional integro-differential equation by a geometric approach, Differ. Equ. Dyn. Syst. 29 (2021) 585 - 596, https://doi.org/10.1007/s12591-017-
0395-1.
[16] M. Bahmanpour, M. Tavassoli-Kajani and M. Maleki, A Müntz wavelets collocation method for solving fractional differential equations, Comput. Appl. Math. 37 (2018) 5514 - 5526.
[17] M. Abbaszadeh, A. Bagheri Salec, S. Kamel and A. Al-Khafaji, The effect of fractional-order derivative for pattern formation of Brusselator reaction–diffusion model occurring in chemical reactions, Iranian J. Math. Chem. 14 (2023) 243 - 269, https://doi.org/10.22052/IJMC.2023.253498.1759.
[18] M. A. Shallal, A. H. Taqi, H. N. Jabbar, H. Rezazadeh, B. F. Jumaa, A. Korkmaz and A. Bekir, A numerical technique of the time fractional gas dynamics equation using finite element approach with cubic Hermit element, Appl. Comput. Math. 21 (2022) 269 - 278.
[19] M. Pourbabaee and A. Saadatmandi, Collocation method based on Chebyshev polynomials for solving distributed order fractional differential equations, Comput. Methods Differ. Equ. 9 (2021) 858 - 873, https://doi.org/10.22034/CMDE.2020.38506.1695.
[20] M. Pourbabaee and A. Saadatmandi, A new operational matrix based on Müntz–Legendre polynomials for solving distributed order fractional differential equations, Math. Comput. Simulation 194 (2022) 210 - 235, https://doi.org/10.1016/j.matcom.2021.11.023.
[21] A. Abedini, K. Ivaz, S. Shahmorad and A. Dadvand, Numerical solution of the time-fractional Navier-Stokes equations for incompressible flow in a lid-driven cavity, Comput. Appl. Math. 40 (2021) #34, https://doi.org/10.1007/s40314-021-01413-w.
[22] E. Ashpazzadeh, M. Lakestani and A. Fatholahzadeh, Spectral methods combined with operational matrices for fractional optimal control problems: a review, Appl. Comput. Math. 20 (2021) 209 - 235.
[23] S. Bonyadi, Y. Mahmoudi, M. Lakestani and M. Jahangiri rad, Numerical solution of space-time fractional PDEs with variable coefficients using shifted Jacobi collocation method, Comput. Methods Differ. Equ. 11 (2023) 81-94, https://doi.org/10.22034/CMDE.2022.49901.2077.
[24] H. Fazli, F. Bahrami and S. Shahmorad, Extremal solutions for multiterm nonlinear fractional differential equations with nonlinear boundary conditions, Comput. Methods Differ. Equ. 11 (2023) 32 - 41, https://doi.org/10.22034/CMDE.2021.48310.2018.
[25] M. N. Oqielat, T. Eriqat, Z. Al-Zhour, A. El-Ajou and S. Momani, Numerical solutions of time-fractional nonlinear water wave partial differential equation via Caputo fractional derivative: an effective analytical method and some applications, Appl. Comput. Math. 21 (2022) 207 - 222.
[26] F. Nourian, M. Lakestani, S. Sabermahani and Y. Ordokhani, Touchard wavelet technique for solving time-fractional Black Scholes model, Comp. Appl. Math. 41 (2022) #150, https://doi.org/10.1007/s40314-022-01853-y.
[27] F. Shariffar, A. H. R. Sheikhani and M. Mashoof, Numerical analysis of fractional differential equation by TSI-wavelet method, Comput. Methods Differ. Equ. 9 (2021) 659 - 669, https://doi.org/10.22034/CMDE.2020.29679.1429.
[28] A. Ghasemi and A. Saadatmandi, A new Bernstein-reproducing kernel method for solving forced Duffing equations with integral boundary conditions, Comput. Methods Differ. Equ. 12 (2024) 329 - 337, https://doi.org/10.22034/cmde.2023.57413.2401.
[29] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag Berlin Heidelberg 2010.
[30] V. Mazja, Sobolev Spaces, Springer Berlin, Heidelberg, 1985.
[31] M. Bergounioux, A. Leaci, G. Nardi and F. Tomarelli, Fractional Sobolev spaces and functions of bounded variation of one variable, Fract. Calc. Appl. Anal. 20 (2017) 936 - 962, https://doi.org/10.1515/fca-2017-0049.
[32] R. Mohammadzadeh, M. Lakestani and M. Dehghan, Collocation method for the numerical solutions of Lane-Emden type equations using cubic Hermite spline functions, Math. Methods Appl. Sci. 37 (2014) 1303 - 1317, https://doi.org/10.1002/mma.2890.