[1] D. Jao and L. De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, In Proc. Int. Workshop Post Quant. Cryptography (2011) 19 - 34.
[2] C. Costello, P. Longa and M. Naehrig, Efficient algorithms for supersingular isogeny Diffie-Hellman, In M. Robshaw and J. Katz (eds) CRYPTO 2016, Part I, 9814 of LNCS, 572 - 601, Springer, Heidelberg, Aug. 2016.
[3] S. D. Galbraith, C. Petit, B. Shani and Y. B. Ti, On the security of supersingular isogeny cryptosystems, In J. Cheon, T. Takagi (eds) Advances in Cryptology – ASIACRYPT 2016, Springer, Berlin, Heidelberg.
[4] D. J. Bernstein and T. Lange, Post-quantum cryptography, Nature 549 (2017) 188 - 194.
[5] W. Castryck and T. Decru, CSIDH on the surface, In J. Ding, J. P. Tillich (eds), Post-Quantum Cryptography. PQCrypto (2020) Springer.
[6] R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Coding Thv (1978) 114 - 116.
[7] L. De Feo, D. Jao and J. Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, J. Math. Cryptol. 8 (2014) 209 - 247.
[8] J. H. Silverman, The Arithmetic of Elliptic Curves, 106 New York, Springer 2009.
[9] J. S. Milne, Arithmetic Duality Theorems, Academic Press, 1986.
[10] D. X. Charles, K. E. Lauter and E. Z. Goren, Cryptographic hash functions from expander graphs, J. Cryptology 22 (2009) 93- 113,
https://doi.org/10.1007/s00145-007-9002-x.
[11] K. Eisenträger, S. Hallgren, K. Lauter, T. Morrison and C. Petit, Supersingular isogeny graphs and endomorphism rings: reductions and solutions, In: J. B. Nielsen, V. Rijmen (eds.) Advances in Cryptology - EUROCRYPT 2018 (2018) 329- 368, Springer International Publishing.
[12] C. Delfs and S.D. Galbraith, Computing isogenies between supersingular elliptic curves over FP , Des. Codes Cryptogr. 78 (2016) 425- 440, https://doi.org/10.1007/s10623-014-0010-1.
[13] A. Childs, D. Jao and V. Soukharev, Constructing elliptic curve isogenies in quantum subexponential time, J. Math. Cryptol. 8 (2014) 1 - 29, https://doi.org/10.1515/jmc-2012-0016.
[14] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, In Proc. 35th Ann. Symp on Foundations of Computer Science (1994) 124 - 134.
[15] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, (2010).
[16] E. Berlekamp, R. McEliece and H. Van Tilborg, On the inherent intractability of certain coding problems, IEEE Transactions on Information Theory 24 (1978) 384 - 386, https://doi.org/10.1109/TIT.1978.1055873.
[17] O. Goldreich, S. Goldwasser and S. Halevi, Public-key cryptosystems from lattice reduction problems, In: B. S. Kaliski (eds) Advances in Cryptology - CRYPTO ’97. CRYPTO 1997. Lecture Notes in Computer Science, vol 1294. Springer, Berlin, Heidelberg, https://doi.org/10.1007/BFb0052231
[18] R. Gallager, Low-density parity-check codes, IRE Transactions on Information Theory 8 (1962) 21 - 28.
[19] E. Arıkan, Channel polarization: a method for constructing capacityachieving codes for symmetric binary-input memoryless channels, IEEE Transactions on Information Theory, 55 (2009) 3051 - 3073.
[20] M. Tsfasman, S. Vladuµ and D. Nogin, Algebraic-Geometric Codes: Basic Notions, American Mathematical Society, 2007.
[21] C. Gentry, Fully homomorphic encryption using ideal lattices, In Proc. fortyfirst annual ACM symposium on Theory of computing (2009) 169 - 178.
[22] P. Kocher, J. Jaffe and B. Jun, Differential power analysis, In Advances in Cryptology - CRYPTO 099, LNCS 1666, 388 - 397 Springer-Verlag, 1999, https://doi.org/10.1007/3-540-48405-1_25.
[23] K. Gandolfi, C. Mourtel and F. Olivier, Electromagnetic analysis: concrete results, in the proceedings of CHES 2001, Lecture Notes in Computer Science, 2162 251 -261, Paris, France, 2001.
[24] D. Boneh, R. A. DeMillo and R. J. Lipton, On the importance of checking cryptographic protocols for faults, In Advances in cryptology—EUROCRYPT ’97 (Konstanz), Springer 1997.