[1] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
[2] A. H. Bhrawy, E. Tohidi and F. Soleymani, A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl. Math. Comput. 219 (2012) 482 - 497, https://doi.org/10.1016/j.amc.2012.06.020.
[3] P. Bakhtiari, T. Lotfi, K. Mahdiani and F. Soleymani, Interval Ostrowski–type methods with guaranteed convergence, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59 (2013) 221 - 234, https://doi.org/10.1007/s11565-012-0174-4.
[4] J. M. Snyder, Interval analysis for computer graphics, ACM SIGGRAPH Comput. Graph 26 (1992) 121-130, https://doi.org/10.1145/142920.134024.
[5] M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds, Reliab. Comput. 4 (1998) 83 - 97, https://doi.org/10.1023/A:1009958918582.
[6] S. P. Mudur and P. A. Koparkar, Interval methods for processing geometric objects, IEEE Comput. Graph. Appl. 4 (1984) 7 - 17,
https://doi.org/10.1109/MCG.1984.275931.
[7] N. J. Higham, Functions of matrices: Theory and computation, 104, SIAM, 2008.
[8] L. S. Shieh, Y. T. Tsay and C. T. Wang, Matrix sector functions and their applications to systems theory, IEE Proc. 131 (1984) 171 - 181, https://doi.org/10.1049/ip-d.1984.0029.
[9] J. A. Marrero, R. B. Taher, Y. El Khatabi and M. Rachidi, On explicit formulas of the principal matrix pth root by polynomial decompositions, Appl. Math. Comput. 242 (2014) 435 - 443, https://doi.org/10.1016/j.amc.2014.05.110.
[10] J. S.-H. Tsai, L. S. Shieh and R. E. Yates, Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix sector function, Comput. Math. Appl. 15 (1988) 903-913, https://doi.org/10.1016/08981221(88)90034-X.
[11] S. Miyajima, Fast verified computation for the matrix principal pth root, J. Comput. Appl. Math. 330 (2018) 276 - 288,
https://doi.org/10.1016/j.cam.2017.08.018.
[12] M. Moccari and T. Lotfi, On a two-step optimal Steffensen-type method: Relaxed local and semi-local convergence analysis and dynamical stability, J. Math. Anal. Appl. 468 (2018) 240 - 269, https://doi.org/10.1016/j.jmaa.2018.08.007.
[13] M. Moccari, Computing the matrix square root: A problem-solving approach using Mathematica and Pólya’s strategies, AUT J. Math. Comput. (2025) Articles in Press, https://doi.org/ 10.22060/AJMC.2025.23508.1262.
[14] B. Iannazzo, On the Newton method for the matrix pth root, SIAM J. Matrix Anal. Appl. 28 (2006) 503 - 523, https://doi.org/10.1137/050624790.
[15] S. M. Rump, New results on verified inclusions, in: W. L. Miranker, R. A. Toupin (eds)Accurate Scientific Computations, Springer, Berlin, Heidelberg, (1986), 31 - 69.
[16] S. M. Rump, On the solution of interval linear systems, Computing 47 (1992) 337 - 353, https://doi.org/10.1007/BF02320201.
[17] G. Alefeld and J. Herzberger, Introduction to Interval Computation, Academic Press, 2012.
[18] G. Alefeld and G. Mayer, Interval analysis: Theory and applications, J. Comput. Appl. Math. 121 (2000) 421 - 464, https://doi.org/10.1016/S0377-0427(00)00342-3.
[19] S. Singh and G. Panda, SVD enclosure of a class of interval matrices, Inf. Sci. 666 (2024) #120386, https://doi.org/10.1016/j.ins.2024.120386.
[20] H. Ratschek and J. Rokne, Geometric Computations with Interval and New Robust Methods: Applications in Computer Graphics, GIS and Computational Geometry, Elsevier, 2003.
[21] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill, 2006.
[22] S. H. Friedberg, A. J. Insel and L. E. Spence, Elementary Linear Algebra, Prentice Hall, 1997.
[23] H.Wozniakowski, Numerical stability for solving nonlinear equations, Numer. Math. 27 (1976) 373 - 390, https://doi.org/10.1007/BF01399601.
[24] M. Moccari, Smoothing the absolute value equations by the componentwise analysis, J. Math. Model. 13 (2025) 251 - 262, https://doi.org/10.22124/JMM.2024.28343.2501.
[25] M. Grau-Sánchez, M. Noguera and J. M. Gutiérrez, On some computational orders of convergence, Appl. Math. Lett. 23 (2010) 472 - 478, https://doi.org/10.1016/j.aml.2009.12.006.
[26] M. Moccari and T. Lotfi, Using majorizing sequences for the semi-local convergence of a high-order and multipoint iterative method along with stability analysis, J. Math. Ext. 15 (2021) 1 - 32.
[27] M. Moccari, T. Lotfi and V. Torkashvand, On the stability of a two-step method for a fourth-degree family by computer designs along with applications, Int. J. Nonlinear Anal. Appl. 14 (2023) 261 - 282, https://doi.org/10.22075/IJNAA.2022.25849.3142.
[28] P. I. Davies and N. J. Higham, Computing f(A)b for matrix functions f, in: QCD and Numerical Analysis III , Springer Berlin Heidelberg, 2005.