1. T. Abe and O. Hatori, Generalized gyrovector spaces and a Mazur-Ulam theorem, Publ. Math. Debrecen 87 (2015) 393-413.
2. M. Ferreira, Spherical continuous wavelet transforms arising from sections of the Lorentz group, Appl. Comput. Harmon. Anal. 26 (2009) 212-229.
3. M. Ferreira, Harmonic analysis on the Einstein gyrogroup, J. Geom. Symmetry Phys. 35 (2014) 21-60.
4. M. Ferreira, Harmonic analysis on the Möbius gyrogroup,J. Fourier Anal. Appl. 21 (2) (2015) 281-317.
5. T.Foguel, M. K. Kinyon, J. D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (2006) 183-212.
6. T. Foguel, A. A. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory 3 (2000) 27-46.
7. T. Foguel, A. A. Ungar, Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pacific J. Math. 197 (2001) 1-11.
8. W. Krammer, H. K. Urbantke, K-loops, gyrogroups and symmetric spaces, Results Math. 33 (1998) 310-327.
9. T. Y. Lam, On subgroups of prime index, Amer. Math. Monthly 111 (3) (2004) 256-258.
10. J. Park, S. Kim,Hilbert projective metric on a gyrogroup of qubit density matrices, Rep. Math. Phys. 76 (3) (2015) 389-400.
11. T. Suksumran, The Algebra of Gyrogroups:Cayley’s Theorem, Lagrange’s Theorem, and Isomorphism Theorems, In: Essays in Mathematics and its Applications, T. Rassias, P. Pardalos (Eds), Springer, Cham (2016).
12. T. Suksumran, Gyrogroup actions: a generalization of group actions, J. Algebra 454 (2016) 70-91.
13. T. Suksumran, K. Wiboonton,Lagrange's theorem for gyrogroups and the Cauchy property, Quasigroups Related Systems 22 (2) (2014) 283-294.
14. T. Suksumran, K. Wiboonton, Einstein gyrogroup as a B-loop, Rep. Math. Phys. 76 (2015) 63-74.
15. T. Suksumran, K. Wiboonton, Isomorphism theorems for gyrogroups and L-subgyrogroups,J. Geom. Symmetry Phys. 37 (2015) 67-83.
16. A. A. Ungar, Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys. 27 (6) (1997) 881-951.
17. A. A. Ungar,The hyperbolic geometric structure of the density matrix for mixed state qubits, Found. Phys. 32 (11) (2002) 1671-1699.
18. A. A. Ungar, Einstein's velocity addition law and its hyperbolic geometry, Comput. Math. Appl. bf 53 (2007) 1228-1250.
19. A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
20. A. A. Ungar,Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.