1. L. V. Ahlfors, Möbius transformations in several dimensions, University of Minnesota School of Mathematics, Minneapolis, 1981.
2. L. V. Ahlfors, Möbius transformations in Rn expressed through 2×2 matrices of Clifford numbers, Complex Variables 5 (1986) 215 - 221.
3. M. A. Alonso, G. S. Pogosyan, K. B. Wolf, Wigner functions for curved spaces I: on hyperboloids, J. Math. Phys. 43 (12) (2002) 5857 - 5871.
4. A. Boussejra, A. Intissar, L2-Concrete spectral analysis of the invariant Laplacian ∆α;β in the unit complex ball Bn, J. Funct. Anal. 160 (1998) 115-140.
5. A. Boussejra, M. Zouhair, Coherent states quantization of generalized Bergman spaces on the unit ball of Cn with a new formula for their associated berezin transforms, Arxiv preprint:1204.0934 (2012).
6. J. L. Chen, A. A. Ungar, From the group SL(2; C) to gyrogroups and gyrovector spaces and hyperbolic geometry, Found. Phys. 31 (11) (2001) 1611-1639.
7. M. Ferreira, Gyrogroups in Projective Hyperbolic Clifford Analysis, in:Hypercomplex Analysis and Applications -Trends in Mathematics, I. Sabadini, F. Sommen (Eds.), Springer, Basel, 2011.
8. M. Ferreira, G. Ren, Möbius gyrogroups: a Clifford algebra approach, J. Algebra 328 (1) (2011) 230-253.
9. M. Ferreira, Harmonic analysis on the Einstein gyrogroup, J. Geom. Symm. Phys. 35 (2014) 21-60.
10. M. Ferreira, Harmonic analysis on the Möbius gyrogroup, J. Fourier Anal. Appl. 21 (2) (2015) 281 - 317.
11. M. Ferreira, Harmonic analysis on the proper velocity gyrogroup, Banach J. Math. Anal. 11 (1) (2017) 21–49.
12. A. Grigor;yan, Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, Vol. 47, American Mathematical Society, providence, RI, 2009.
13. S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando FL, 1984.
14. S. Helgason, Geometric Analysis on Symmetric Spaces, AMS, Providence, RI, 1994.
15. A. Kasparian, A. A. Ungar, Lie gyrovector spaces, J. Geom. Symm. Phys. 1 (1) (2004) 3-53.
16. Y. Katznelson, An Introduction to Harmonic Analysis, Third edition, Cambridge University Press, 2004.
17. T. H. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975) 145-159.
18. T. H. Koornwinder, Jacobi Functions and Analysis on Noncompact Semisimple Lie Groups, Special Functions: Group Theoretical Aspects and Applications, Mathematics and Its Applications, Vol. 18, R. A. Askey, T. H. Koornwinder, W. Schempp (Eds.) 1-84, Springer, Dordrecht, 1984.
19. C. Liu, L. Peng, Generalized Helgason-Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in Rn, Indiana Univ. Math. J. 58 (3) (2009) 1457-1492.
20. J, Malzan, Quantum mechanics presented as Harmonic analysis, Int. J. Theor. Phys. 9 (5) (1974) 305-321.
21. R. S. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989) 51-148.
22. E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
23. A. Terras, Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, Second Edition, Springer, New York, 2013.
24. A. A. Ungar, Thomas precession and the parametrization of the Lorentz transformation group, Found.
Phys. Lett. 1 (1988) 57-89.
25. A. A. Ungar, Thomas precession and its associated grouplike structure, Am. J. Phys. 59 (1991) 824 - 834.
26. A. A. Ungar, Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys. 27 (6) (1997)881-951.
27. A. A. Ungar, Analytic Hyperbolic Geometry - Mathematical Foundations and Applications, World Scientific, Singapore, 2005.
28. A. A. Ungar, The proper-time Lorentz group demystified, J. Geom. Symm. Phys. 4 (2005) 69-95.
29. A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific, Singapore, 2008.
30. A. A. Ungar, Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ 2010.
31. A. A. Ungar, Hyperbolic Triangle Centers: The Special Relativistic Approach, Springer-Verlag, New York 2010.
32. A. A. Ungar, Hyperbolic geometry, J. Geom. Symm. Phys. 32 (2013) 61-86.
33. A. A. Ungar, Analytic Hyperbolic Geometry in n Dimensions: An Introduction, CRC Press, Boca Raton,FL, 2015.
34. V. V. Volchkov, Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009.
35. G. Zhang, A weighted Plancherel formula, II. The case of the unit ball, Studia Math. 102 (1992) 103-120.