1. T. Abe, O. Hatori, Generalized gyrovector spaces and a Mazur-Ulam theorem, Publ. Math. Debrecen 87 (2015) 393–413.
2. S. Kim, Distances of qubit density matrices on Bloch sphere, J. Math. Phys. 52 (2011) 102303, 8 pp.
3. J. Lawson, Y. Lim, Symmetric sets with midpoints and algebraically equivalent theories, Results Math. 46 (2004) 37-56.
4. A. A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces, Acad. Publ., Dordrecht, Kluwer, 2001.
5. A. A. Ungar, Analytic Hyperbolic Geometry: Mathematical Foundations and Applications, World Scientific, Singapore, 2005.
6. A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
7. A. A. Ungar, A Gyrovector Space Approach to Hyperbolic Geometry, Morgan & Claypool Pub., San Rafael, Californai, 2009.
8. A. A. Ungar, Hyperbolic Triangle Centers: The Special Relativistic Approach, Springer-Verlag, New York, 2010.
9. A. A. Ungar, Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
10. A. A. Ungar, Analytic Hyperbolic Geometry in n Dimensions: An Introduction, CRC Press, Boca Raton, FL, 2015.